全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

MiR-328 Expression Is Decreased in High-Grade Gliomas and Is Associated with Worse Survival in Primary Glioblastoma

DOI: 10.1371/journal.pone.0047270

Full-Text   Cite this paper   Add to My Lib

Abstract:

MicroRNAs, a group of small endogenous, noncoding RNAs, are aberrantly expressed in many human cancers and can act as oncogene or anti-oncogene. Recent evidence suggests that some miRNAs have prognostic value for tumors. MiR-328 is known as a tumor suppressor; however, its relationship with the clinicopathological features of glioblastoma (GBM) and its prognostic value has yet not been investigated. We found that expression of miR-328 was significantly decreased both in anaplastic and GBM cohorts and that low miR-328 expression also conferred poor survival in primary GBM (PGBM) patients. MiR-328 might, therefore, serve as an independent prognostic marker. Furthermore, expression profiles of miR-328-associated mRNAs were established via microarrays for 60 GBM samples. The ontology of the miR-328-associated genes was then analyzed, which identified gene sets tightly related to cell mitosis. In addition, ectopic expression of miR-328 inhibited U87 cell proliferation and induced U87 cell cycle arrest. In conclusion, this is the first report showing that miR-328 is associated with patient’s survival time and that miR-328 might serve as an independent prognostic biomarker for GBM.

References

[1]  Jansen M, Yip S, Louis DN (2010) Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol 9: 717–726.
[2]  Okumus NO, Gursel B, Meydan D, Ozdemir O, Odabas E, et al. (2012) Prognostic significance of concomitant radiotherapy in newly diagnosed glioblastoma multiforme: a multivariate analysis of 116 patients. Ann Saudi Med 32: 250–255.
[3]  Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996.
[4]  Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, et al. (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64: 6892–6899.
[5]  Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, et al. (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466.
[6]  Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352: 997–1003.
[7]  Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK (2007) MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer 48: 403–407.
[8]  Yan W, Zhang W, You G, Bao Z, Wang Y, et al. (2012) Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS One 7: e30339.
[9]  Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355.
[10]  Guessous F, Zhang Y, Kofman A, Catania A, Li Y, et al. (2010) microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9: 1031–1036.
[11]  Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449: 682–688.
[12]  Sun L, Yan W, Wang Y, Sun G, Luo H, et al. (2011) MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res 1389: 9–18.
[13]  Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, et al. (2012) The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets 16 Suppl 2S103–109.
[14]  Schaefer A, Stephan C, Busch J, Yousef GM, Jung K (2010) Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol 7: 286–297.
[15]  Chen L, Jiang M, Yuan W, Tang H (2012) Prognostic value of miR-93 overexpression in resectable gastric adenocarcinomas. Acta Gastroenterol Belg 75: 22–27.
[16]  Pichler M, Winter E, Stotz M, Eberhard K, Samonigg H, et al.. (2012) Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer [Epub ahead of print].
[17]  Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, et al. (2012) miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol 14: 712–719.
[18]  Niyazi M, Zehentmayr F, Niemoller OM, Eigenbrod S, Kretzschmar H, et al. (2011) MiRNA expression patterns predict survival in glioblastoma. Radiat Oncol 6: 153.
[19]  Srinivasan S, Patric IR, Somasundaram K (2011) A ten-microRNA expression signature predicts survival in glioblastoma. PLoS One 6: e17438.
[20]  Fridman E, Dotan Z, Barshack I, David MB, Dov A, et al. (2010) Accurate molecular classification of renal tumors using microRNA expression. J Mol Diagn 12: 687–696.
[21]  Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stuhler K, et al. (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20: 539–550.
[22]  Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359: 543–547.
[23]  Liu X, Erikson RL (2007) The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem Biophys Res Commun 353: 960–964.
[24]  Calligaris D, Verdier-Pinard P, Devred F, Villard C, Braguer D, et al. (2010) Microtubule targeting agents: from biophysics to proteomics. Cell Mol Life Sci 67: 1089–1104.
[25]  Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, et al. (2012) Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol 106: 519–529.
[26]  Wang ZX, Bian HB, Wang JR, Cheng ZX, Wang KM, et al. (2011) Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer. J Surg Oncol 104: 847–851.
[27]  Jiang L, Mao P, Song L, Wu J, Huang J, et al. (2010) miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 177: 29–38.
[28]  Guan Y, Mizoguchi M, Yoshimoto K, Hata N, Shono T, et al. (2010) MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res 16: 4289–4297.
[29]  Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L, et al. (2011) MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 102: 2186–2190.
[30]  Zhi F, Chen X, Wang S, Xia X, Shi Y, et al. (2010) The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer 46: 1640–1649.
[31]  Li WQ, Li YM, Tao BB, Lu YC, Hu GH, et al. (2010) Downregulation of ABCG2 expression in glioblastoma cancer stem cells with miRNA-328 may decrease their chemoresistance. Med Sci Monit 16: HY27–30.
[32]  Luo XJ, Li W, Yang LF, Yu XF, Xiao LB, et al. (2011) DAPK1 mediates the G1 phase arrest in human nasopharyngeal carcinoma cells induced by grifolin, a potential antitumor natural product. Eur J Pharmacol 670: 427–434.
[33]  Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, et al. (2012) Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 23: 370–379.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133