Background In Xenopus early embryogenesis, various genes are involved with mesoderm formation. In particular, dorsal mesoderm contains the organizer region and induces neural tissues through the inhibition of bone morphogenetic protein (BMP) signaling. In our initial study to identify novel genes necessary for maintaining the undifferentiated state, we unexpectedly revealed mesoderm-inducing activity for mNanog in Xenopus. Methodology/Principal Findings The present series of experiments investigated the effect of mNanog gene expression on Xenopus embryo. Ectopic expression of mNanog induced dorsal mesoderm gene activity, secondary axis formation, and weakly upregulated Activin/nodal signaling. The injection of mNanog also effectively inhibited the target genes of BMP signaling, while Xvent2 injection downregulated the dorsal mesoderm gene expression induced by mNanog injection. Conclusions/Significance These results suggested that mNanog expression induces dorsal mesoderm by regulating both Activin/nodal signaling and BMP signaling in Xenopus. This finding highlights the possibly novel function for mNanog in stimulating the endogenous gene network in Xenopus mesoderm formation.
References
[1]
Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121: 3651–3662.
[2]
Joseph EM, Melton DA (1997) Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev Biol 184: 367–372.
[3]
Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, et al. (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127: 5319–5329.
[4]
Asashima M, Nakano H, Uchiyama H, Davids M, Plessow S, et al. (1990) The vegetalizing factor belongs to a family of mesoderm-inducing proteins related to erythroid differentiation factor. Naturwissenschaften 77: 389–391.
[5]
Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, et al. (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790.
[6]
Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840.
[7]
Cho KW, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67: 1111–11120.
[8]
Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6: 356–366.
[9]
Grainger RM, Gurdon JB (1989) Loss of competence in amphibian induction can take place in single nondividing cells. Proc Nat Acad Sci USA 86: 1900–1904.
[10]
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, et al. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113: 631–642.
[11]
Takahashi K, Yamanaka S (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126: 663–676.
[12]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. (2007) Induction of pluripotent stem cells from adult human embryonic and adult human fibroblasts by Defined Factors. Cell 131: 861–872.
[13]
Osada SI, Wright CV (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126: 3229–3240.
[14]
Onuma Y, Takahashi S, Haramoto Y, Tanegashima K, Yokota C, et al. (2005) Xnr2 and Xnr5 unprocessed proteins inhibit Wnt signaling upstream of dishevelled. Dev Dyn 234: 900–910.
[15]
Hemmati-Brivanlou A, Melton DA (1992) A truncated Activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359: 609–614.
[16]
Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, et al. (1996) The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controling dorsoventral patterning of Xenopus mesoderm. Development 122: 3045–3053.
[17]
Karaulanov E, Kn?chel W, Niehrs C (2004) Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J 23: 844–856.
[18]
Veenstra GJ, Peterson-Maduro J, Mathu MT, van der Vliet PC, Destrée OH (1998) TUNEL Non-cell autonomous induction of apoptosis and loss of posterior structures by activation domain-specific interactions of Oct-1 in the Xenopus embryo. Cell Death Differ 5: 774–784.
[19]
Gurdon JB, Fairman S, Mohun TJ, Brennan S (1985) Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula. Cell 41: 913–922.
[20]
Smith JC, Price BM, Green JB, Weigel D, Herrmann BG (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67: 79–87.
[21]
Carnac G, Kodjabachian L, Gurdon JB, Lemaire P (1996) The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122: 3055–3065.
[22]
Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, et al. (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci U S A 91: 10255–10259.
[23]
Christian JL, McMahon JA, McMahon AP, Moon RT (1991) Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development 111: 1045–1055.
[24]
Rosa FM (1989) Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 57: 965–974.
[25]
Henry GL, Melton DA (1998) Mixer, a homeobox gene required for endoderm development. Science 281: 91–96.
[26]
Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382: 595–601.
Pan G, Pei D (2005) NanogDCD The stem cell pluripotency factor NANOG activates transcription with two unusually potent subdomains at its C terminus. J Biol Chem 280: 1401–1407.
[29]
Wang J, Levasseur DN, Orkin SH (2008) Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A 105: 6326–31.
[30]
Wylie C, Kofron M, Payne C, Anderson R, Hosobuchi M, et al. (1996) Maternal beta-catenin establishes a ‘dorsal signal’ in early Xenopus embryos. Development 122: 2987–2996.
[31]
McKendry R, Hsu SC, Harland RM, Grosschedl R (1997) LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 192: 420–431.
[32]
Grimm OH, Gurdon JB (2002) Nuclear exclusion of Smad2 is a mechanism leading to loss of competence. Nat Cell Biol 4: 519–522.
[33]
Scerbo P, Girardot F, Vivien C, Markov GV, Luxardi G, et al. (2012) Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. PLoS One 7: e36855.
[34]
Xu C, Fan ZP, Müller P, Fogley R, DiBiase A, et al. (2012) Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 22: 625–638.
[35]
Schuff M, Siegel D, Philipp M, Bundschu K, Heymann N, et al. (2012) Characterization of Danio rerio Nanog and Functional Comparison to Xenopus Vents. Stem Cells Dev 21: 1225–1238.
[36]
Morris SA, Almeida AD, Tanaka H, Ohta K, Ohnuma S (2007) Tsukushi modulates Xnr2, FGF and BMP signaling: regulation of Xenopus germ layer formation. PLoS One 2: e1004.
[37]
Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, et al. (2008) NANOG is a direct target of TGFbeta/Activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3: 196–206.
[38]
Vallier L, Mendjan S, Brown S, Chng Z, Teo A, et al. (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136: 1339–1349.
[39]
James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/Activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132: 1273–1282.
[40]
Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, et al. (2005) ActivinA maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23: 489–495.
[41]
Dixon JE, Allegrucci C, Redwood C, Kump K, Bian Y, et al. (2010) Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development 137: 2973–2980.
[42]
Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, et al. (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238: 1613–1616.