全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity

DOI: 10.1371/journal.pone.0046956

Full-Text   Cite this paper   Add to My Lib

Abstract:

We previously demonstrated that cells isolated from the mesenchymal region of the human amniotic membrane (human amniotic mesenchymal tissue cells, hAMTC) possess immunoregulatory roles, such as inhibition of lymphocyte proliferation and cytokine production, and suppression of generation and maturation of monocyte-derived dendritic cells, as reported for MSC from other sources. The precise factors and mechanisms responsible for the immunoregulatory roles of hAMTC remain unknown. In this study, we aimed to identify the soluble factors released by hAMTC and responsible for the anti-proliferative effect on lymphocytes, and the mechanisms underlying their actions, in vitro. Conditioned medium (CM) was prepared under routine culture conditions from hAMTC (CM-hAMTC) and also from fragments of the whole human amniotic membrane (CM-hAM). We analyzed the thermostability, chemical nature, and the molecular weight of the factors likely responsible for the anti-proliferative effects. We also evaluated the participation of cytokines known to be involved in the immunomodulatory actions of MSC from other sources, and attempted to block different synthetic pathways. We demonstrate that the inhibitory factors are temperature-stable, have a small molecular weight, and are likely of a non-proteinaceous nature. Only inhibition of cyclooxygenase pathway partially reverted the anti-proliferative effect, suggesting prostaglandins as key effector molecules. Factors previously documented to take part in the inhibitory effects of MSCs from other sources (HGF, TGF-β, NO and IDO) were not involved. Furthermore, we prove for the first time that the anti-proliferative effect is intrinsic to the amniotic membrane and cells derived thereof, since it is manifested in the absence of stimulating culture conditions, as opposed to MSC derived from the bone marrow, which possess an anti-proliferative ability only when cultured in the presence of activating stimuli. Finally, we show that the amniotic membrane could be an interesting source of soluble factors, without referring to extensive cell preparation.

References

[1]  Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6: 230–247.
[2]  Erices A, Conget P, Minguell J (2000) Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haemathology 109: 235–242.
[3]  Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228 doi:10.1089/107632701300062859.
[4]  Villaron EM, Almeida J, López-Holgado N, Alcoceba M, Sánchez-Abarca LI, et al. (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89: 1421–1427.
[5]  In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, et al. (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102: 1548–1549 doi:10.1182/blood-2003-04-1291.
[6]  Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, et al. (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22: 1330–1337 doi:10.1634/stemcells.2004–0013.
[7]  La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, et al. (2009) Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131: 267–282 doi:10.1007/s00418-008-0519-3.
[8]  Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring H-J, et al. (2008) Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells 26: 300–311 doi:10.1634/stemcells.2007-0594.
[9]  Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39: 678–683 doi:10.1016/j.bone.2006.04.020.
[10]  Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69: 880–893 doi:10.1002/jnr.10337.
[11]  Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213: 341–347 doi:10.1002/jcp.21200.
[12]  Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110: 3499–3506 doi:10.1182/blood-2007-02-069716.
[13]  Shi M, Liu ZW, Wang FS (2011) Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol 164: 1–8 doi:10.1111/j.1365-2249.2011.04327.x.
[14]  Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol Mech Dis 6: 457–478 doi:10.1146/annurev-pathol-011110-130230?.
[15]  Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, et al. (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838–3843.
[16]  Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, et al. (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367–372 doi:10.1182/blood-2005-072657.
[17]  Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24: 74–85 doi:10.1634/stemcells.2004-0359.
[18]  Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, et al. (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18: 899–914 doi:10.3727/096368909X471314.
[19]  Jiang X-X, Zhang Y, Liu B, Zhang S-X, Wu Y, et al. (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120–4126 doi:10.1182/blood-2004-020586.
[20]  Popp FC, Eggenhofer E, Renner P, Slowik P, Lang SA, et al. (2008) Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transplant Immunology 20: 55–60 doi:10.1016/j.trim.2008.08.004.
[21]  Eggenhofer E, Renner P, Soeder Y, Popp FC, Hoogduijn MJ, et al. (2011) Features of synergism between mesenchymal stem cells and immunosuppressive drugs in a murine heart transplantation model. Transplant Immunology 25: 141–147 doi:10.1016/j.trim.2011.06.002.
[22]  Sato K, Ozaki K, Mori M, Muroi K, Ozawa K (2010) Mesenchymal stromal cells for graft-versus-host disease : basic aspects and clinical outcomes. J Clin Exp Hematop 50: 79–89.
[23]  Tolar J, Villeneuve P, Keating A (2011) Mesenchymal stromal cells for graft-versus-host disease. Human Gene Therapy 22: 257–262 doi:10.1089/hum.2011.1104.
[24]  Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, et al. (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755–1761 doi:10.1182/blood-2005-04-1496.
[25]  Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, et al. (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57: 1192–1203 doi:10.1002/glia.20841.
[26]  Liang L, Dong C, Chen X, Fang Z, Xu J, et al. (2011) Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulforic acid (TNBS)-induced colitis. Cell Transplant 20: 1395–1408 doi:10.3727/096368910X557245.
[27]  Rasmusson I, Ringdén O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76: 1208–1213 doi:10.1097/01.TP.0000082540.43730.80.
[28]  Krampera M, Glennie S, Dyson J, Scott D, Laylor R, et al. (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722–3729 doi:10.1182/blood-2002-07-2104.
[29]  Ren G, Su J, Zhang L, Zhao X, Ling W, et al. (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27: 1954–1962 doi:10.1002/stem.118.
[30]  Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, et al. (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78: 1439–1448 doi:10.1097/01.TP.0000144606.84234.49.
[31]  Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, et al. (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1: 296–305 doi:10.1002/term.40.
[32]  Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, et al. (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26: 182–192 doi:10.1634/stemcells.2007-0491.
[33]  Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, et al. (2009) Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 18: 405–422 doi:10.3727/096368909788809857.
[34]  Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, et al. (2012) Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy 14: 153–161 doi:10.3109/14653249.2011.613930.
[35]  Cargnoni A, Di Marcello M, Campagnol M, Nassuato C, Albertini A, et al. (2009) Amniotic Membrane Patching Promotes Ischemic Rat Heart Repair. Cell Transplant 18: 1147–1159 doi:10.3727/096368909X12483162196764.
[36]  Sant’Anna LB, Cargnoni A, Ressel L, Vanosi G, Parolini O (2011) Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transplant 20: 441–453 doi:10.3727/096368910X522252.
[37]  Magatti M, Munari S, Vertua E, Parolini O (2012) Amniotic Membrane-Derived Cells Inhibit Proliferation of Cancer Cell Lines by Inducing Cell Cycle Arrest. J Cellular Mol Med: n/a–n/a. doi:10.1111/j.1582-4934.2012.01531.x.
[38]  Groh ME, Maitra B, Szekely E, Koc ON (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33: 928–934 doi:10.1016/j.exphem.2005.05.002.
[39]  Li Pira G, Ivaldi F, Bottone L, Quarto R, Manca F (2006) Human bone marrow stromal cells hamper specific interactions of CD4 and CD8 T lymphocytes with antigen-presenting cells. Hum Immunol 67: 976–985 doi:10.1016/j.humimm.2006.08.298.
[40]  Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4: 762–774 doi:10.1038/nri1457.
[41]  Chang C-J, Yen M-L, Chen Y-C, Chien C-C, Huang H-I, et al. (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24: 2466–2477 doi:10.1634/stemcells.2006-0071.
[42]  Prichard HL, Reichert W, Klitzman B (2008) IFATS collection: Adipose-derived stromal cells improve the foreign body response. Stem Cells 26: 2691–2695 doi:10.1634/stemcells.2008-0140.
[43]  Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, et al. (2009) Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS ONE 4: e5643 doi:10.1371/journal.pone.0005643.
[44]  Djouad F, Charbonnier L-M, Bouffi C, Louis-Plence P, Bony C, et al. (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25: 2025–2032 doi:10.1634/stemcells.2006-0548.
[45]  Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, et al. (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109: 228–234 doi:10.1182/blood-2006-02-002246.
[46]  Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, et al. (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103: 4619–4621 doi:10.1182/blood-2003-11-3909.
[47]  Hegyi B, Kudlik G, Monostori é, Uher F (2012) Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells. Biochem Biophys Res Commun 419: 215–220 doi:10.1016/j.bbrc.2012.01.150.
[48]  Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815–1822 doi:10.1182/blood-2004-04-1559.
[49]  Kronsteiner B, Wolbank S, Peterbauer A, Hackl C, Redl H, et al.. (2011) Human Mesenchymal Stem Cells from Adipose Tissue and Amnion Influence T-Cells Depending on Stimulation Method and Presence of Other Immune Cells. Stem Cells and Development. doi:10.1089/scd.2011.0031.
[50]  Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, et al. (2011) Immunogenicity and Immunomodulatory Properties of Umbilical Cord Lining Mesenchymal Stem Cells. Cell Transplant 20: 655–667 doi:10.3727/096368910X536473.
[51]  Kang JW, Koo HC, Hwang SY, Kang SK, Ra JC, et al. (2012) Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J Vet Sci 13: 23 doi:10.4142/jvs.2012.13.1.23.
[52]  Ackerman WE, Summerfield TLS, Vandre DD, Robinson JM, Kniss DA (2007) Nuclear Factor-Kappa B Regulates Inducible Prostaglandin E Synthase Expression in Human Amnion Mesenchymal Cells. Biol Reprod 78: 68–76 doi:10.1095/biolreprod.107.061663.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133