Epidermal human keratinocytes are exposed to a wide range of environmental genotoxic insults, including the UV component of solar radiation. Epidermal homeostasis in response to cellular or tissue damage is maintained by a population of keratinocyte stem cells (KSC) that reside in the basal layer of the epithelium. Using cell sorting based on cell-surface markers, we have identified a novel α6 integrinhigh+/CD44+ sub-population of basal keratinocytes. These α6 integrinhigh+/CD44+ keratinocytes have both high proliferative potential, form colonies in culture that have characteristics of holoclones and have a unique pattern of resistance to apoptosis induced by UVB radiation or by agents that induce single- or double strand DNA breaks. Resistance to UVB induced apoptosis in the α6 integrinhigh+/CD44+ cells involved increased expression of TAp63 and was overcome by PI-3 kinase inhibition. In marked contrast, the α6 integrinhigh+/CD44+ cells were sensitive to apoptosis induced by the cross-linking agent cisplatin, and imatinib inhibition of c-Abl blocked the ability of cisplatin to kill α6 integrinhigh+/CD44+ cells. Our findings reveal a population of basal keratinocytes with long-term proliferative properties that display specific patterns of apoptotic resistance that is dependent upon the genotoxic stimulus, and provide insights into how these cells can be targeted with chemotherapeutic agents.
References
[1]
Green H (1977) Terminal differentiation of cultured human epidermal cells. Cell 11: 405–416.
[2]
Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84: 2302–2306.
[3]
Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73: 713–724.
[4]
Hertle MD, Adams JC, Watt FM (1991) Integrin expression during human epidermal development in vivo and in vitro. Development 112: 193–206.
[5]
Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A 95: 3902–3907.
[6]
Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197: 461–463.
[7]
Pierce GB, Speers WC (1988) Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res 48: 1996–2004.
[8]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983–3988.
[9]
Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, et al. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037.
[10]
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951.
[11]
Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, et al. (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104: 973–978.
[12]
Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC (2007) Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med 36: 594–603.
[13]
Wang C, Tammi M, Tammi R (1992) Distribution of hyaluronan and its CD44 receptor in the epithelia of human skin appendages. Histochemistry 98: 105–112.
[14]
Sutherland BM, Harber LC, Kochevar IE (1980) Pyrimidine dimer formation and repair in human skin. Cancer Res 40: 3181–3185.
[15]
Balajee AS, Bohr VA (2000) Genomic heterogeneity of nucleotide excision repair. Gene 250: 15–30.
[16]
Young AR (1987) The sunburn cell. Photodermatol 4: 127–134.
[17]
Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10: R25.
[18]
Burden DA, Kingma PS, Froelich-Ammon SJ, Bjornsti MA, Patchan MW, et al. (1996) Topoisomerase II.etoposide interactions direct the formation of drug-induced enzyme-DNA cleavage complexes. J Biol Chem 271: 29238–29244.
[19]
Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, et al. (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20: 3977–3987.
[20]
Povirk LF, Wubter W, Kohnlein W, Hutchinson F (1977) DNA double-strand breaks and alkali-labile bonds produced by bleomycin. Nucleic Acids Res 4: 3573–3580.
[21]
Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, et al. (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A 98: 3156–3161.
[22]
Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, et al. (2008) Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 134: 62–73.
[23]
Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, et al. (2008) Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer 122: 298–304.
[24]
Boldrup L, Coates PJ, Gu X, Nylander K (2007) DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J Pathol 213: 384–391.
[25]
Liefer KM, Koster MI, Wang XJ, Yang A, McKeon F, et al. (2000) Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 60: 4016–4020.
[26]
Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, et al. (1998) p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.
[27]
Okuyama R, Ogawa E, Nagoshi H, Yabuki M, Kurihara A, et al. (2007) p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene 26: 4478–4488.
[28]
Koster MI, Roop DR (2004) The role of p63 in development and differentiation of the epidermis. J Dermatol Sci 34: 3–9.
[29]
Ogawa E, Okuyama R, Ikawa S, Nagoshi H, Egawa T, et al. (2008) p51/p63 Inhibits ultraviolet B-induced apoptosis via Akt activation. Oncogene 27: 848–856.
[30]
Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, et al. (2009) Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med 15: 1179–1185.