Background HLA class I genotype is a major determinant of the outcome of HIV infection, and the impact of certain alleles on HIV disease outcome is well studied. Recent studies have demonstrated that certain HLA class I alleles that are in linkage disequilibrium, such as HLA-A*74 and HLA-B*57, appear to function co-operatively to result in greater immune control of HIV than mediated by either single allele alone. We here investigate the extent to which HLA alleles - irrespective of linkage disequilibrium - function co-operatively. Methodology/Principal Findings We here refined a computational approach to the analysis of >2000 subjects infected with C-clade HIV first to discern the individual effect of each allele on disease control, and second to identify pairs of alleles that mediate ‘co-operative additive’ effects, either to improve disease suppression or to contribute to immunological failure. We identified six pairs of HLA class I alleles that have a co-operative additive effect in mediating HIV disease control and four hazardous pairs of alleles that, occurring together, are predictive of worse disease outcomes (q<0.05 in each case). We developed a novel ‘sharing score’ to quantify the breadth of CD8+ T cell responses made by pairs of HLA alleles across the HIV proteome, and used this to demonstrate that successful viraemic suppression correlates with breadth of unique CD8+ T cell responses (p = 0.03). Conclusions/Significance These results identify co-operative effects between HLA Class I alleles in the control of HIV-1 in an extended Southern African cohort, and underline complementarity and breadth of the CD8+ T cell targeting as one potential mechanism for this effect.
References
[1]
Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB (1994) Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68: 6103–6110.
[2]
Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, et al. (1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68: 4650–4655.
[3]
Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. (1999) Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189: 991–998.
[4]
Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, et al. (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283: 857–860.
[5]
Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, et al. (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432: 769–775.
[6]
Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, et al. (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317: 944–947.
[7]
Matthews PC, Adland E, Listgarten J, Leslie A, Mkhwanazi N, et al. (2011) HLA-A*7401-Mediated Control of HIV Viremia Is Independent of Its Linkage Disequilibrium with HLA-B*5703. J Immunol 186: 5675–5686.
[8]
Koehler RN, Walsh AM, Saathoff E, Tovanabutra S, Arroyo MA, et al. (2010) Class I HLA-A*7401 Is Associated with Protection from HIV-1 Acquisition and Disease Progression in Mbeya, Tanzania. J Infect Dis 202: 1562–1566.
[9]
Matthews PC, Prendergast A, Leslie A, Crawford H, Payne R, et al. (2008) Central role of reverting mutations in HLA associations with human immunodeficiency virus set point. J Virol 82: 8548–8559.
[10]
Honeyborne I, Codoner FM, Leslie A, Tudor-Williams G, Luzzi G, et al. (2010) HLA-Cw*03 -restricted CD8+ T-cell responses targeting the HIV-1 Gag Major Homology Region drive virus immune escape and fitness constraints compensated by intra-codon variation. J Virol 84: 11279–11288.
[11]
Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, et al. (1999) HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283: 1748–1752.
[12]
Leslie A, Matthews PC, Listgarten J, Carlson JM, Kadie C, et al. (2010) Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J Virol 84: 9879–9888.
[13]
Storey JD (2003) The false positive discovery rate: a Bayesian interpretation and the q-value. Annals of Statistics 31: 2013–2035.
[14]
Frater AJ, Brown H, Oxenius A, Gunthard HF, Hirschel B, et al. (2007) Effective T-cell responses select human immunodeficiency virus mutants and slow disease progression. J Virol 81: 6742–6751.
[15]
Honeyborne I, Prendergast A, Pereyra F, Leslie A, Crawford H, et al. (2007) Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple gag-specific CD8+ T-cell epitopes. J Virol 81: 3667–3672.
[16]
Ngumbela KC, Day CL, Mncube Z, Nair K, Ramduth D, et al. (2008) Targeting of a CD8 T cell env epitope presented by HLA-B*5802 is associated with markers of HIV disease progression and lack of selection pressure. AIDS Res Hum Retroviruses 24: 72–82.
[17]
Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, et al. (2007) CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13: 46–53.
[18]
Goepfert PA, Lumm W, Farmer P, Matthews P, Prendergast A, et al. (2008) Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J Exp Med 205: 1009–1017.
[19]
Kloverpris HN, Stryhn A, Harndahl M, van der Stok M, Payne RP, et al. (2012) HLA-B*57 Micropolymorphism shapes HLA allele-specific epitope immunogenicity, selection pressure, and HIV immune control. J Virol 86: 919–929.
[20]
Alter G, Rihn S, Walter K, Nolting A, Martin M, et al. (2009) HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol 83: 6798–6805.
[21]
Alter G, Altfeld M (2009) NK cells in HIV-1 infection: evidence for their role in the control of HIV-1 infection. J Intern Med 265: 29–42.
[22]
Shapiro RL, Hughes MD, Ogwu A, Kitch D, Lockman S, et al. (2010) Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N Engl J Med 362: 2282–2294.
[23]
Huang KH, Goedhals D, Fryer H, van Vuuren C, Katzourakis A, et al. (2009) Prevalence of HIV type-1 drug-associated mutations in pre-therapy patients in the Free State, South Africa. Antivir Ther 14: 975–984.
[24]
Song W, He D, Brill I, Malhotra R, Mulenga J, et al. (2011) Disparate associations of HLA class I markers with HIV-1 acquisition and control of viremia in an African population. PLoS One 6: e23469.
[25]
Sidney J, Peters B, Frahm N, Brander C, Sette A (2008) HLA class I supertypes: a revised and updated classification. BMC Immunol 9: 1.
[26]
Goulder PJ, Bunce M, Krausa P, McIntyre K, Crowley S, et al. (1996) Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res Hum Retroviruses 12: 1691–1698.
Brumme ZL, Brumme CJ, Heckerman D, Korber BT, Daniels M, et al. (2007) Evidence of Differential HLA Class I-Mediated Viral Evolution in Functional and Accessory/Regulatory Genes of HIV-1. PLoS Pathog 3: e94.
[29]
Carlson J, Kadie C, Mallal S, Heckerman D (2007) Leveraging hierarchical population structure in discrete association studies. PLoS ONE 2: e591.
[30]
Fellay J, Frahm N, Shianna KV, Cirulli ET, Casimiro DR, et al. (2011) Host genetic determinants of T cell responses to the MRKAd5 HIV-1 gag/pol/nef vaccine in the step trial. J Infect Dis 203: 773–779.
[31]
Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: 9440–9445.
[32]
Carlson JM, Listgarten J, Pfeifer N, Tan V, Kadie C, et al. (2012) Widespread Impact of HLA Restriction on Immune Control and Escape Pathways in HIV-1. J Virol 86: 5230–5243.
[33]
Carlson JM, Heckerman D, Shani G (2009) Estimating false discovery rates for contingency tables. Microsoft Research Report MSR-TR-2009-53.