全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

A Fish Eye Out of Water: Ten Visual Opsins in the Four-Eyed Fish, Anableps anableps

DOI: 10.1371/journal.pone.0005970

Full-Text   Cite this paper   Add to My Lib

Abstract:

The “four-eyed” fish Anableps anableps has numerous morphological adaptations that enable above and below-water vision. Here, as the first step in our efforts to identify molecular adaptations for aerial and aquatic vision in this species, we describe the A. anableps visual opsin repertoire. We used PCR, cloning, and sequencing to survey cDNA using unique primers designed to amplify eight sequences from five visual opsin gene subfamilies, SWS1, SWS2, RH1, RH2, and LWS. We also used Southern blotting to count opsin loci in genomic DNA digested with EcoR1 and BamH1. Phylogenetic analyses confirmed the identity of all opsin sequences and allowed us to map gene duplication and divergence events onto a tree of teleost fish. Each of the gene-specific primer sets produced an amplicon from cDNA, indicating that A. anableps possessed and expressed at least eight opsin genes. A second PCR-based survey of genomic and cDNA uncovered two additional LWS genes. Thus, A. anableps has at least ten visual opsins and all but one were expressed in the eyes of the single adult surveyed. Among these ten visual opsins, two have key site haplotypes not found in other fish. Of particular interest is the A. anableps-specific opsin in the LWS subfamily, S180γ, with a SHYAA five key site haplotype. Although A. anableps has a visual opsin gene repertoire similar to that found in other fishes in the suborder Cyprinodontoidei, the LWS opsin subfamily has two loci not found in close relatives, including one with a key site haplotype not found in any other fish species. A. anableps opsin sequence data will be used to design in situ probes allowing us to test the hypothesis that opsin gene expression differs in the distinct ventral and dorsal retinas found in this species.

References

[1]  Miller RR (1979) Ecology, Habits and Relationships of the Middle America Cuatro Ojos, Anableps dowi (Pisces: Anablepidae). Copeia 1: 82–91.
[2]  Zahl PA, McLaughlin JJA, Gomprecht RJ (1977) Visual versatility and feeding of the four-eyed fishes, Anableps. Copeia 4: 791–793.
[3]  Schwassmann HO, Kruger L (1966) Experimental analysis of the visual system of the four-eyed fish Anableps microlepis. Vision Res 5: 269–281.
[4]  Sivak J, Howland HC, McGill-Harelstad P (1987) Vision of the Humboldt penguin (Spheniscus humboldti) in air and water. Proc R Soc Lond B Biol Sci 229: 467–472.
[5]  Leonard DW, Meek KM (1997) Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys J 72: 1382–1387.
[6]  Nelson JS (1984) Fishes of the World. New York: John Wiley & Sons.
[7]  Kawamura S (1995) Phototransduction, excitation and adaptation. Neurobiology and Clinical Aspects of the Outer Retina. Kluwer Academic Publishers.
[8]  Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4: 877–886.
[9]  Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vision Res 48: 2022–2041.
[10]  Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc 68: 413–471.
[11]  Ward MN, Churcher AM, Dick KJ, Laver CR, Owens GL, et al. (2008) The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. BMC Evol Biol 8: 210.
[12]  Yokoyama S, Zhang H, Radlwimmer FB, Blow NS (1999) Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci U S A 96: 6279–6284.
[13]  Yokoyama S, Radlwimmer FB (1999) The molecular genetics of red and green color vision in mammals. Genetics 153: 919–932.
[14]  Bridges CDB (1972) The rhodopsin-porphyropsin visual system. Handbook of sensory physiology 7: 417–480.
[15]  Meyer-Rochow VB, Coddington PE (2003) Eyes and vision of the New Zealand torrentfish Cheimarrichthys fosteri Von Haast (1874): histology, photochemistry and electrophysiology. Fish Adaptations 337–381.
[16]  Temple SE, Plate EM, Ramsden S, Haimberger TJ, Roth WM, et al. (2006) Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192: 301–313.
[17]  Avery JA, Bowmaker JK (1982) Visual pigments in the four-eyed fish, Anableps anableps. Nature 298: 62–63.
[18]  Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, et al. (2000) The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27: 513–523.
[19]  Hope AJ, Partridge JC, Hayes PK (1998) Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc Biol Sci 265: 869–874.
[20]  Makino CL, Dodd RL (1996) Multiple visual pigments in a photoreceptor of the salamander retina. J Gen Physiol 108: 27–34.
[21]  Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HD, et al. (2008) Speciation through sensory drive in cichlid fish. Nature 455: 620–626.
[22]  Archer S, Hope A, Partridge JC (1995) The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Biol Sci 262: 289–295.
[23]  Takechi M, Kawamura S (2005) Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development. J Exp Biol 208: 1337–1345.
[24]  Davies WL, Cowing JA, Carvalho LS, Potter IC, Trezise AE, et al. (2007) Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. FASEB J 21: 2713–2724.
[25]  Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.
[26]  Odelberg SJ, Weiss RB, Hata A, White R (1995) Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res 23: 2049–2057.
[27]  Zylstra P, Rothenfluh HS, Weiller GF, Blanden RV, Steele EJ (1998) PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts. Immunol Cell Biol 76: 395–405.
[28]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[29]  Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526.
[30]  Hrbek T, Seckinger J, Meyer A (2007) A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Mol Phylogenet Evol 43: 986–998.
[31]  Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T (1992) Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci U S A 89: 5932–5936.
[32]  Yokoyama S, Takenaka N, Blow N (2007) A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei). Gene 396: 196–202.
[33]  Yokoyama S, Yang H, Starmer WT (2008) Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179: 2037–2043.
[34]  Matsumoto Y, Fukamachi S, Mitani H, Kawamura S (2006) Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene 371: 268–278.
[35]  Neafsey DE, Hartl DL (2005) Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages. Gene 350: 161–171.
[36]  Minamoto T, Shimizu I (2005) Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei). Comp Biochem Physiol B Biochem Mol Biol 140: 197–205.
[37]  Zhang H, Futami K, Horie N, Okamura A, Utoh T, et al. (2000) Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Lett 469: 39–43.
[38]  Yokoyama S, Tada T, Zhang H, Britt L (2008) Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci U S A 105: 13480–13485.
[39]  Chinen A, Hamaoka T, Yamada Y, Kawamura S (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163: 663–675.
[40]  Yokoyama R, Yokoyama S (1990) Isolation, DNA sequence and evolution of a color visual pigment gene of the blind cave fish Astyanax fasciatus. Vision Res 30: 807–816.
[41]  Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232: 193–202.
[42]  Fuller RC, Carleton KL, Fadool JM, Spady TC, Travis J (2004) Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190: 147–154.
[43]  Mass AM, Supin AY (2007) Adaptive features of aquatic mammals' eye. Anat Rec (Hoboken) 290: 701–715.
[44]  Levenson DH, Ponganis PJ, Crognale MA, Deegan JF, Dizon A, et al. (2006) Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192: 833–843.
[45]  Seehausen O, Alphen JJM, Witte F (1997) Cichlid Fish Diversity Threatened by Eutrophication That Curbs Sexual Selection. Science 277: 1808.
[46]  Carleton KL, Kocher TD (2001) Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18: 1540–1550.
[47]  Carleton KL, Spady TC, Streelman JT, Kidd MR, McFarland WN, et al. (2008) Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol 6: 22.
[48]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[49]  Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133