The APC tumor suppressor gene is frequently mutated in human colorectal cancer, with nonsense mutations accounting for 30% of all mutations in this gene. Reintroduction of the WT APC gene into cancer cells generally reduces tumorigenicity or induces apoptosis. In this study, we explored the possibility of using drugs to induce premature termination codon (PTC) readthrough (aminoglycosides, negamycin), as a means of reactivating endogenous APC. By quantifying the readthrough of 11 nonsense mutations in APC, we were able to identify those giving the highest levels of readthrough after treatment. For these mutations, we demonstrated that aminoglycoside or negamycin treatment led to a recovery of the biological activity of APC in cancer cell lines, and showed that the level of APC activity was proportional to the level of induced readthrough. These findings show that treatment with readthrough inducers should be considered as a potential strategy for treating cancers caused by nonsense mutations APC gene. They also provide a rational basis for identifying mutations responsive to readthrough inducers.
References
[1]
Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120: 3327–3335.
[2]
Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66: 131–144.
[3]
Groden J, Joslyn G, Samowitz W, Jones D, Bhattacharyya N, et al. (1995) Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Res 55: 1531–1539.
[4]
Morin PJ, Vogelstein B, Kinzler KW (1996) Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A 93: 7950–7954.
[5]
Laurent-Puig P, Beroud C, Soussi T (1998) APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 26: 269–270.
[6]
Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A (2007) Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther 81: 99–103.
[7]
Linde L, Kerem B (2008) Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet 24: 552–563.
[8]
Rowe SM, Clancy JP (2009) Pharmaceuticals targeting nonsense mutations in genetic diseases: progress in development. BioDrugs 23: 165–174.
[9]
Arakawa M, Shiozuka M, Nakayama Y, Hara T, Hamada M, et al. (2003) Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 134: 751–758.
[10]
Allamand V, Bidou L, Arakawa M, Floquet C, Shiozuka M, et al. (2008) Drug-induced readthrough of premature stop codons leads to the stabilization of laminin alpha2 chain mRNA in CMD myotubes. J Gene Med 10: 217–224.
[11]
Floquet C, Deforges J, Rousset JP, Bidou L (2010) Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res.
[12]
Zilberberg A, Lahav L, Rosin-Arbesfeld R (2010) Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut 59: 496–507.
[13]
Bidou L, Hatin I, Perez N, Allamand V, Panthier JJ, et al. (2004) Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 11: 619–627.
[14]
Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, et al. (2000) Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48: 164–169.
[15]
Aurino S, Nigro V (2006) Readthrough strategies for stop codons in Duchenne muscular dystrophy. Acta Myol 25: 5–12.
[16]
Sermet-Gaudelus I, Renouil M, Fajac A, Bidou L, Parbaille B, et al. (2007) In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med 5: 5.
[17]
Martin R, Phillips-Jones MK, Watson FJ, Hill LS (1993) Codon context effects on nonsense suppression in human cells. Biochem Soc Trans 21: 846–851.
[18]
Manuvakhova M, Keeling K, Bedwell DM (2000) Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6: 1044–1055.
[19]
Cassan M, Rousset JP (2001) UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2: 3.
[20]
Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, et al. (2004) Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol 55: 422–426.
[21]
Burke JF, Mogg AE (1985) Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 13: 6265–6272.
[22]
Yang C, Feng J, Song W, Wang J, Tsai B, et al. (2007) A mouse model for nonsense mutation bypass therapy shows a dramatic multiday response to geneticin. Proc Natl Acad Sci U S A 104: 15394–15399.
[23]
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.
[24]
Fearon K, McClendon V, Bonetti B, Bedwell DM (1994) Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 269: 17802–17808.
[25]
Feng YX, Copeland TD, Oroszlan S, Rein A, Levin JG (1990) Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloney murine leukemia virus. Proc Natl Acad Sci U S A 87: 8860–8863.
[26]
Salas-Marco J, Bedwell DM (2005) Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. J Mol Biol 348: 801–815.
[27]
Kramer EB, Vallabhaneni H, Mayer LM, Farabaugh PJ (2010) A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA 16: 1797–1808.
[28]
Lynch SR, Puglisi JD (2001) Structural origins of aminoglycoside specificity for prokaryotic ribosomes. J Mol Biol 306: 1037–1058.
[29]
Schroeder SJ, Blaha G, Moore PB (2007) Negamycin binds to the wall of the nascent chain exit tunnel of the 50S ribosomal subunit. Antimicrob Agents Chemother 51: 4462–4465.
[30]
Yang LY, Trujillo JM (1990) Biological characterization of multidrug-resistant human colon carcinoma sublines induced/selected by two methods. Cancer Res 50: 3218–3225.
[31]
Dexter DL, Spremulli EN, Fligiel Z, Barbosa JA, Vogel R, et al. (1981) Heterogeneity of cancer cells from a single human colon carcinoma. Am J Med 71: 949–956.
[32]
Bidou L, Stahl G, Hatin I, Namy O, Rousset JP, et al. (2000) Nonsense-mediated decay mutants do not affect programmed -1 frameshifting. RNA 6: 952–961.
[33]
Oh JH, Ku JL, Yoon KA, Kwon HJ, Kim WH, et al. (1999) Establishment and characterization of 12 human colorectal-carcinoma cell lines. Int J Cancer 81: 902–910.