Background Non small cell lung cancer (NSCLC) is a leading cause of cancer death. We have shown previously that IL-12rb2 KO mice develop spontaneously lung adenocarcinomas or bronchioalveolar carcinomas. Aim of the study was to investigate i) IL-12Rβ2 expression in human primary lung adenocarcinomas and in their counterparts, i.e. normal bronchial epithelial cells (NBEC), ii) the direct anti-tumor activity of IL-12 on lung adenocarcinoma cells in vitro and vivo, and the mechanisms involved, and iii) IL-12 activity on NBEC. Methodology/Principal Findings Stage I lung adenocarcinomas showed significantly (P = 0.012) higher frequency of IL-12Rβ2 expressing samples than stage II/III tumors. IL-12 treatment of IL-12R+ neoplastic cells isolated from primary adenocarcinoma (n = 6) inhibited angiogenesis in vitro through down-regulation of different pro-angiogenic genes (e.g. IL-6, VEGF-C, VEGF-D, and laminin-5), as assessed by chorioallantoic membrane (CAM) assay and PCR array. In order to perform in vivo studies, the Calu6 NSCLC cell line was transfected with the IL-12RB2 containing plasmid (Calu6/β2). Similar to that observed in primary tumors, IL-12 treatment of Calu6/β2+ cells inhibited angiogenesis in vitro. Tumors formed by Calu6/β2 cells in SCID/NOD mice, inoculated subcutaneously or orthotopically, were significantly smaller following IL-12 vs PBS treatment due to inhibition of angiogenesis, and of IL-6 and VEGF-C production. Explanted tumors were studied by histology, immuno-histochemistry and PCR array. NBEC cells were isolated and cultured from lung specimens of non neoplastic origin. NBEC expressed IL-12R and released constitutively tumor promoting cytokines (e.g. IL-6 and CCL2). Treatment of NBEC with IL-12 down-regulated production of these cytokines. Conclusions This study demonstrates that IL-12 inhibits directly the growth of human lung adenocarcinoma and targets the adjacent NBEC. These novel anti-tumor activities of IL-12 add to the well known immune-modulatory properties of the cytokine and may provide a rational basis for the development of a clinical trial.
References
[1]
Airoldi I, Di Carlo E, Banelli B, Moserle L, Cocco C, et al. (2004) The IL-12Rbeta2 gene functions as a tumor suppressor in human B cell malignancies. J Clin Invest 113: 1651–1659.
[2]
Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, et al. (1993) Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 178: 1223–1230.
[3]
Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13: 155–168.
[4]
Dias S, Boyd R, Balkwill F (1998) IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer 78: 361–365.
[5]
Sgadari C, Angiolillo AL, Tosato G (1996) Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87: 3877–3882.
[6]
Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, et al. (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87: 581–586.
[7]
Duda DG, Sunamura M, Lozonschi L, Kodama T, Egawa S, et al. (2000) Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res 60: 1111–1116.
[8]
Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, et al. (1996) A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci U S A 93: 14002–14007.
[9]
Airoldi I, Cocco C, Di Carlo E, Disaro S, Ognio E, et al. (2006) Methylation of the IL-12Rbeta2 gene as novel tumor escape mechanism for pediatric B-acute lymphoblastic leukemia cells. Cancer Res 66: 3978–3980.
[10]
Airoldi I, Di Carlo E, Cocco C, Sorrentino C, Fais F, et al. (2005) Lack of Il12rb2 signaling predisposes to spontaneous autoimmunity and malignancy. Blood 106: 3846–3853.
[11]
Gao SP, Mark KG, Leslie K, Pao W, Motoi N, et al. (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117: 3846–3856.
[12]
Kishimoto T (2005) Interleukin-6: from basic science to medicine—40 years in immunology. Annu Rev Immunol 23: 1–21.
[13]
Yeh HH, Lai WW, Chen HH, Liu HS, Su WC (2006) Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 25: 4300–4309.
[14]
Ferlay J, BF, Pisani P, Parkin DM (2001) Globocan 2000: Cancer Incidence, Mortality and Prevalence. IARC Press Lyon.
[15]
Travis WDCT, Corrin B, Shimosato Y, Brambilla E (1999) Histologic typing of tumours of lung and pleura: World Health Organization international classification of tumors, 3rd edn. New York: Springer-Verlag.
[16]
Bonomi P, Kim K, Fairclough D, Cella D, Kugler J, et al. (2000) Comparison of survival and quality of life in advanced non-small-cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin: results of an Eastern Cooperative Oncology Group trial. J Clin Oncol 18: 623–631.
[17]
Cascone T, Troiani T, Morelli MP, Gridelli C, Ciardiello F (2006) Antiangiogenic drugs in non-small cell lung cancer treatment. Curr Opin Oncol 18: 151–155.
[18]
Airoldi I, Cocco C, Giuliani N, Ferrarini M, Colla S, et al. (2008) Constitutive expression of IL-12RB2 on human multiple myeloma cells delineates a novel therapeutic target. Blood.
[19]
Airoldi I, Di Carlo E, Cocco C, Taverniti G, D'Antuono T, et al. (2007) Endogenous IL-12 triggers an antiangiogenic program in melanoma cells. Proc Natl Acad Sci U S A 104: 3996–4001.
[20]
Suzuki M, Iizasa T, Nakajima T, Kubo R, Iyoda A, et al. (2007) Aberrant methylation of IL-12Rbeta2 gene in lung adenocarcinoma cells is associated with unfavorable prognosis. Ann Surg Oncol 14: 2636–2642.
[21]
Scavelli C, Vacca A, Di Pietro G, Dammacco F, Ribatti D (2004) Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia 18: 1054–1058.
[22]
Spinella F, Garrafa E, Di Castro V, Rosano L, Nicotra MR, et al. (2009) Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. Cancer Res 69: 2669–2676.
[23]
Galietta LJ, Lantero S, Gazzolo A, Sacco O, Romano L, et al. (1998) An improved method to obtain highly differentiated monolayers of human bronchial epithelial cells. In Vitro Cell Dev Biol Anim 34: 478–481.
[24]
Galietta LJ, Musante L, Romio L, Caruso U, Fantasia A, et al. (1998) An electrogenic amino acid transporter in the apical membrane of cultured human bronchial epithelial cells. Am J Physiol 275: L917–923.
[25]
Galietta LJ, Folli C, Marchetti C, Romano L, Carpani D, et al. (2000) Modification of transepithelial ion transport in human cultured bronchial epithelial cells by interferon-gamma. Am J Physiol Lung Cell Mol Physiol 278: L1186–1194.
[26]
Galietta LJ, Pagesy P, Folli C, Caci E, Romio L, et al. (2002) IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro. J Immunol 168: 839–845.
[27]
Saintigny P, Kambouchner M, Ly M, Gomes N, Sainte-Catherine O, et al. (2007) Vascular endothelial growth factor-C and its receptor VEGFR-3 in non-small-cell lung cancer: concurrent expression in cancer cells from primary tumour and metastatic lymph node. Lung Cancer 58: 205–213.
[28]
Takizawa H, Kondo K, Fujino H, Kenzaki K, Miyoshi T, et al. (2006) The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer. Br J Cancer 95: 75–79.
Watkins SK, Egilmez NK, Suttles J, Stout RD (2007) IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol 178: 1357–1362.
[31]
Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, et al. (2003) Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9: 729–737.
[32]
Kaspar M, Trachsel E, Neri D (2007) The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature inhibits tumor growth and metastasis. Cancer Res 67: 4940–4948.
[33]
Stormes KA, Lemken CA, Lepre JV, Marinucci MN, Kurt RA (2005) Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res Treat 89: 209–212.
[34]
Krubasik D, Eisenach PA, Kunz-Schughart LA, Murphy G, English WR (2008) Granulocyte-macrophage colony stimulating factor induces endothelial capillary formation through induction of membrane-type 1 matrix metalloproteinase expression in vitro. Int J Cancer 122: 1261–1272.
[35]
Luppi F, Longo AM, de Boer WI, Rabe KF, Hiemstra PS (2007) Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer 56: 25–33.
[36]
Zhu YM, Webster SJ, Flower D, Woll PJ (2004) Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 91: 1970–1976.
[37]
Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42: 717–727.
[38]
Seike M, Yanaihara N, Bowman ED, Zanetti KA, Budhu A, et al. (2007) Use of a cytokine gene expression signature in lung adenocarcinoma and the surrounding tissue as a prognostic classifier. J Natl Cancer Inst 99: 1257–1269.
[39]
Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, et al. (2002) Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 20: 264–269.
[40]
Gollob JA, Mier JW, Veenstra K, McDermott DF, Clancy D, et al. (2000) Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res 6: 1678–1692.
[41]
Broderick L, Brooks SP, Takita H, Baer AN, Bernstein JM, et al. (2006) IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated memory T cells. Clin Immunol 118: 159–169.
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33: 159–174.
[44]
Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1: 85–91.
[45]
Ribatti D, Gualandris A, Bastaki M, Vacca A, Iurlaro M, et al. (1997) New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J Vasc Res 34: 455–463.