全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Thymoquinone Inhibits the CXCL12-Induced Chemotaxis of Multiple Myeloma Cells and Increases Their Susceptibility to Fas-Mediated Apoptosis

DOI: 10.1371/journal.pone.0023741

Full-Text   Cite this paper   Add to My Lib

Abstract:

In multiple myeloma (MM), malignant plasma cells reside in the bone marrow, where they accumulate in close contact with stromal cells. The mechanisms responsible for the chemotaxis of malignant plasma cells are still poorly understood. Thus, we investigated the mechanisms involved in the chemotaxis of MDN and XG2 MM cell lines. Both cell lines strongly expressed CCR9, CXCR3 and CXCR4 chemokine receptors but only migrated toward CXCL12. Activation of CXCR4 by CXCL12 resulted in the association of CXCR4 with CD45 and activation of PLCβ3, AKT, RhoA, IκBα and ERK1/2. Using siRNA-silencing techniques, we showed CD45/CXCR4 association is essential for CXCL12-induced migration of MM cells. Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn, has been described as a chemopreventive and chemotherapeutic compound. TQ treatment strongly inhibited CXCL12-mediated chemotaxis in MM cell lines as well as primary cells isolated from MM patients, but not normal PBMCs. Moreover, TQ significantly down-regulated CXCR4 expression and CXCL12-mediated CXCR4/CD45 association in MM cells. Finally, TQ also induced the relocalization of cytoplasmic Fas/CD95 to the membrane of MM cells and increased CD95-mediated apoptosis by 80%. In conclusion, we demonstrate the potent anti-myeloma activity of TQ, providing a rationale for further clinical evaluation.

References

[1]  Kyle RA, Rajkumar SV (2007) Monoclonal gammopathy of undetermined significance and smouldering multiple myeloma: emphasis on risk factors for progression. Br J Haematol 139: 730–743.
[2]  Kyle RA, Rajkumar SV (2009) Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma 9: 278–288.
[3]  Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. (2008) Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.
[4]  Ishii Y, Hsiao HH, Sashida G, Ito Y, Miyazawa K, et al. (2006) Derivative (1;7)(q10;p10) in multiple myeloma. A sign of therapy-related hidden myelodysplastic syndrome. Cancer Genet Cytogenet 167: 131–137.
[5]  Nowakowski GS, Witzig TE, Dingli D, Tracz MJ, Gertz MA, et al. (2005) Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood 106: 2276–2279.
[6]  Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7: 585–598.
[7]  Aggarwal R, Ghobrial IM, Roodman GD (2006) Chemokines in multiple myeloma. Exp Hematol 34: 1289–1295.
[8]  Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79: 639–651.
[9]  Moller C, Stromberg T, Juremalm M, Nilsson K, Nilsson G (2003) Expression and function of chemokine receptors in human multiple myeloma. Leukemia 17: 203–210.
[10]  Trentin L, Miorin M, Facco M, Baesso I, Carraro S, et al. (2007) Multiple myeloma plasma cells show different chemokine receptor profiles at sites of disease activity. Br J Haematol 138: 594–602.
[11]  Vande Broek I, Asosingh K, Vanderkerken K, Straetmans N, Van Camp B, et al. (2003) Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer 88: 855–862.
[12]  Fulton AM (2009) The chemokine receptors CXCR4 and CXCR3 in cancer. Curr Oncol Rep 11: 125–131.
[13]  Chan CC, Shen D, Hackett JJ, Buggage RR, Tuaillon N (2003) Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology 110: 421–426.
[14]  Floridi F, Trettel F, Di Bartolomeo S, Ciotti MT, Limatola C (2003) Signalling pathways involved in the chemotactic activity of CXCL12 in cultured rat cerebellar neurons and CHP100 neuroepithelioma cells. J Neuroimmunol 135: 38–46.
[15]  Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, et al. (2000) Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 6: 3530–3535.
[16]  Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, et al. (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89: 462–473.
[17]  Uchida D, Begum NM, Almofti A, Nakashiro K, Kawamata H, et al. (2003) Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp Cell Res 290: 289–302.
[18]  Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63: 3833–3839.
[19]  Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, et al. (2005) Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 65: 1700–1709.
[20]  Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, et al. (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109: 2708–2717.
[21]  Ladas EJ, Jacobson JS, Kennedy DD, Teel K, Fleischauer A, et al. (2004) Antioxidants and cancer therapy: a systematic review. J Clin Oncol 22: 517–528.
[22]  Jakobsen CH, Storvold GL, Bremseth H, Follestad T, Sand K, et al. (2008) DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis. J Lipid Res 49: 2089–2100.
[23]  Heiferman MJ, Salabat MR, Ujiki MB, Strouch MJ, Cheon EC, et al. (2010) Sansalvamide induces pancreatic cancer growth arrest through changes in the cell cycle. Anticancer Res 30: 73–78.
[24]  Hussain T, Gupta S, Adhami VM, Mukhtar H (2005) Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int J Cancer 113: 660–669.
[25]  Worthen DR, Ghosheh OA, Crooks PA (1998) The in vitro anti-tumor activity of some crude and purified components of blackseed, Nigella sativa L. Anticancer Res 18: 1527–1532.
[26]  Gali-Muhtasib H, Roessner A, Schneider-Stock R (2006) Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol 38: 1249–1253.
[27]  Shoieb AM, Elgayyar M, Dudrick PS, Bell JL, Tithof PK (2003) In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int J Oncol 22: 107–113.
[28]  Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, et al. (2004) Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol 25: 857–866.
[29]  Gali-Muhtasib HU, Abou Kheir WG, Kheir LA, Darwiche N, Crooks PA (2004) Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs 15: 389–399.
[30]  Roepke M, Diestel A, Bajbouj K, Walluscheck D, Schonfeld P, et al. (2007) Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther 6: 160–169.
[31]  Kaseb AO, Chinnakannu K, Chen D, Sivanandam A, Tejwani S, et al. (2007) Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res 67: 7782–7788.
[32]  Badary OA, Gamal El-Din AM (2001) Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis. Cancer Detect Prev 25: 362–368.
[33]  Ravindran J, Nair HB, Sung B, Prasad S, Tekmal RR, et al. (2010) Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemosensitization potential. Biochem Pharmacol 79: 1640–1647.
[34]  Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, et al. (1994) Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 83: 3654–3663.
[35]  Puthier D, Bataille R, Amiot M (1999) IL-6 up-regulates mcl-1 in human myeloma cells through JAK/STAT rather than ras/MAP kinase pathway. Eur J Immunol 29: 3945–3950.
[36]  Oliveira DM, Goodell MA (2003) Transient RNA interference in hematopoietic progenitors with functional consequences. Genesis 36: 203–208.
[37]  Badr G, Borhis G, Treton D, Moog C, Garraud O, et al. (2005) HIV type 1 glycoprotein 120 inhibits human B cell chemotaxis to CXC chemokine ligand (CXCL) 12, CC chemokine ligand (CCL)20, and CCL21. J Immunol 175: 302–310.
[38]  Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, et al. (2003) TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci U S A 100: 15548–15553.
[39]  Rosenkilde MM, Gerlach LO, Jakobsen JS, Skerlj RT, Bridger GJ, et al. (2004) Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J Biol Chem 279: 3033–3041.
[40]  Fernandis AZ, Cherla RP, Ganju RK (2003) Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem 278: 9536–9543.
[41]  Popik W, Alce TM, Au WC (2002) Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells. J Virol 76: 4709–4722.
[42]  Stoddart A, Dykstra ML, Brown BK, Song W, Pierce SK, et al. (2002) Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17: 451–462.
[43]  Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, et al. (2002) The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 1: 539–544.
[44]  Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, et al. (2006) The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91: 605–612.
[45]  Bendall LJ, Baraz R, Juarez J, Shen W, Bradstock KF (2005) Defective p38 mitogen-activated protein kinase signaling impairs chemotaxic but not proliferative responses to stromal-derived factor-1alpha in acute lymphoblastic leukemia. Cancer Res 65: 3290–3298.
[46]  Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21: 107–137.
[47]  Shivtiel S, Kollet O, Lapid K, Schajnovitz A, Goichberg P, et al. (2008) CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. J Exp Med 205: 2381–2395.
[48]  Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, et al. (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282: 290–293.
[49]  Rosner D, Stoneman V, Littlewood T, McCarthy N, Figg N, et al. (2006) Interferon-gamma induces Fas trafficking and sensitization to apoptosis in vascular smooth muscle cells via a PI3K- and Akt-dependent mechanism. Am J Pathol 168: 2054–2063.
[50]  Augstein P, Dunger A, Salzsieder C, Heinke P, Kubernath R, et al. (2002) Cell surface trafficking of Fas in NIT-1 cells and dissection of surface and total Fas expression. Biochem Biophys Res Commun 290: 443–451.
[51]  Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776.
[52]  Gali-Muhtasib H, Kuester D, Mawrin C, Bajbouj K, Diestel A, et al. (2008) Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res 68: 5609–5618.
[53]  Li F, Rajendran P, Sethi G (2010) Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 161: 541–554.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133