全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

No Evidence for Strong Recent Positive Selection Favoring the 7 Repeat Allele of VNTR in the DRD4 Gene

DOI: 10.1371/journal.pone.0024410

Full-Text   Cite this paper   Add to My Lib

Abstract:

The human dopamine receptor D4 (DRD4) gene contains a 48-bp variable number of tandem repeat (VNTR) in exon 3, encoding the third intracellular loop of this dopamine receptor. The DRD4 7R allele, which seems to have a single origin, is commonly observed in various human populations and the nucleotide diversity of the DRD4 7R haplotype at the DRD4 locus is reduced compared to the most common DRD4 4R haplotype. Based on these observations, previous studies have hypothesized that positive selection has acted on the DRD4 7R allele. However, the degrees of linkage disequilibrium (LD) of the DRD4 7R allele with single nucleotide polymorphisms (SNPs) outside the DRD4 locus have not been evaluated. In this study, to re-examine the possibility of recent positive selection favoring the DRD4 7R allele, we genotyped HapMap subjects for DRD4 VNTR, and conducted several neutrality tests including long range haplotype test and iHS test based on the extended haplotype homozygosity. Our results indicated that LD of the DRD4 7R allele was not extended compared to SNP alleles with the similar frequency. Thus, we conclude that the DRD4 7R allele has not been subjected to strong recent positive selection.

References

[1]  Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, et al. (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358: 149–152.
[2]  Chang FM, Kidd JR, Livak KJ, Pakstis AJ, Kidd KK (1996) The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Hum Genet 98: 91–101.
[3]  Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, et al. (1995) Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 65: 1157–1165.
[4]  Schoots O, Van Tol HH (2003) The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenomics J 3: 343–348.
[5]  Ebstein RP, Novick O, Umansky R, Priel B, Osher Y, et al. (1996) Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat Genet 12: 78–80.
[6]  Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, et al. (1996) Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nat Genet 12: 81–84.
[7]  LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, et al. (1996) Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1: 121–124.
[8]  Faraone SV, Doyle AE, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158: 1052–1057.
[9]  Malhotra AK, Virkkunen M, Rooney W, Eggert M, Linnoila M, et al. (1996) The association between the dopamine D4 receptor (D4DR) 16 amino acid repeat polymorphism and novelty seeking. Mol Psychiatry 1: 388–391.
[10]  Gelernter J, Kranzler H, Coccaro E, Siever L, New A, et al. (1997) D4 dopamine-receptor (DRD4) alleles and novelty seeking in substance-dependent, personality-disorder, and control subjects. Am J Hum Genet 61: 1144–1152.
[11]  Swanson J, Oosterlaan J, Murias M, Schuck S, Flodman P, et al. (2000) Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proc Natl Acad Sci U S A 97: 4754–4759.
[12]  Kotler M, Manor I, Sever Y, Eisenberg J, Cohen H, et al. (2000) Failure to replicate an excess of the long dopamine D4 exon III repeat polymorphism in ADHD in a family-based study. Am J Med Genet 96: 278–281.
[13]  Castellanos FX, Lau E, Tayebi N, Lee P, Long RE, et al. (1998) Lack of an association between a dopamine-4 receptor polymorphism and attention-deficit/hyperactivity disorder: genetic and brain morphometric analyses. Mol Psychiatry 3: 431–434.
[14]  Ding YC, Chi HC, Grady DL, Morishima A, Kidd JR, et al. (2002) Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci U S A 99: 309–314.
[15]  Hattori E, Nakajima M, Yamada K, Iwayama Y, Toyota T, et al. (2009) Variable number of tandem repeat polymorphisms of DRD4: re-evaluation of selection hypothesis and analysis of association with schizophrenia. Eur J Hum Genet 17: 793–801.
[16]  Wang E, Ding YC, Flodman P, Kidd JR, Kidd KK, et al. (2004) The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am J Hum Genet 74: 931–944.
[17]  Ohashi J, Naka I, Patarapotikul J, Hananantachai H, Brittenham G, et al. (2004) Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection. Am J Hum Genet 74: 1198–1208.
[18]  Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, et al. (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419: 832–837.
[19]  Tishkoff SA, Varkonyi R, Cahinhinan N, Abbes S, Argyropoulos G, et al. (2001) Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293: 455–462.
[20]  The International HapMap consortium (2003) The International HapMap Project. Nature 426: 789–796.
[21]  The International HapMap consortium (2005) A haplotype map of the human genome. Nature 437: 1299–1320.
[22]  Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4: e72.
[23]  Watterson GA (1978) The homozygosity test of neutrality. Genetics 88: 405–417.
[24]  Ohashi J, Naka I, Tsuchiya N (2011) The impact of natural selection on an ABCC11 SNP determining earwax type. Mol Biol Evol 28: 849–857.
[25]  Sabeti PC, Walsh E, Schaffner SF, Varilly P, Fry B, et al. (2005) The case for selection at CCR5-Delta32. PLoS Biol 3: e378.
[26]  Spencer CC, Coop G (2004) SelSim: a program to simulate population genetic data with natural selection and recombination. Bioinformatics 20: 3673–3675.
[27]  Saunders MA, Slatkin M, Garner C, Hammer MF, Nachman MW (2005) The extent of linkage disequilibrium caused by selection on G6PD in humans. Genetics 171: 1219–1229.
[28]  Livak KJ, Rogers J, Lichter JB (1995) Variability of dopamine D4 receptor (DRD4) gene sequence within and among nonhuman primate species. Proc Natl Acad Sci U S A 92: 427–431.
[29]  Qian Q, Wang Y, Zhou R, Yang L, Faraone SV (2004) Family-based and case-control association studies of DRD4 and DAT1 polymorphisms in Chinese attention deficit hyperactivity disorder patients suggest long repeats contribute to genetic risk for the disorder. Am J Med Genet B Neuropsychiatr Genet 128B: 84–89.
[30]  Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47–50.
[31]  Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3: 87–112.
[32]  Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323–354.
[33]  Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.
[34]  Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78: 629–644.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133