全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Metabolites of an Epac-Selective cAMP Analog Induce Cortisol Synthesis by Adrenocortical Cells through a cAMP-Independent Pathway

DOI: 10.1371/journal.pone.0006088

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adrenal zona fasciculata (AZF) cells express a cAMP-activated guanine nucleotide exchange protein (Epac2) that may function in ACTH-stimulated cortisol synthesis. Experiments were done to determine whether cAMP analogs that selectively activate Epacs could induce cortisol synthesis and the expression of genes coding for steroidogenic proteins in bovine AZF cells. Treatment of AZF cells with the Epac-selective cAMP analog (ESCA) 8CPT-2′-OMe-cAMP induced large (>100 fold), concentration-dependent, delayed increases in cortisol synthesis and the expression of mRNAs coding for the steroid hydroxylases CYP11a1, CYP17, CYP21, and the steroid acute regulatory protein (StAR). However, a non-hydrolyzable analog of this ESCA, Sp-8CPT-2′-OMe-cAMP, failed to stimulate cortisol production even at concentrations that activated Rap1, a downstream effector of Epac2. Accordingly, putative metabolites of 8CPT-2′-OMe-cAMP, including 8CPT-2′-OMe-5′AMP, 8CPT-2′-OMe-adenosine, and 8CPT-adenine all induced cortisol synthesis and steroid hydroxylase mRNA expression with a temporal pattern, potency, and effectiveness similar to the parent compound. At concentrations that markedly stimulated cortisol production, none of these metabolites significantly activated cAMP-dependent protein kinase (PKA). These results show that one or more metabolites of the ESCA 8CPT-2′-OMe-cAMP induce cortico-steroidogenesis by activating a panel of genes that code for steroidogenic proteins. The remarkable increases in cortisol synthesis observed in this study appear to be mediated by a novel cAMP-, Epac- and PKA-independent signaling pathway.

References

[1]  Simpson ER, Waterman MR (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Ann Rev Physiol 50: 427–440.
[2]  Bondy PK (1985) Diseases of the Adrenal Gland. Williams Textbook of Endocrinology. Philadelphia: W.B. Saunders Company. pp. 816–890.
[3]  Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257: 1248–1251.
[4]  Raikhinstein M, Zohar M, Hanukoglu I (1994) cDNA cloning and sequence analysis of the bovine adrenocorticotropic hormone (ACTH) receptor. Biochim Biophys Acta 1220: 329–332.
[5]  Penhoat A, Jaillard C, Saez JM (1989) Corticotropin positively regulates its own receptors and cAMP response in cultured bovine adrenal cells. Proc Natl Acad Sci U S A 86: 4978–4981.
[6]  Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine Reviews 25: 947–970.
[7]  Bose H, Lingappa VR, Miller WL (2002) Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417: 87–91.
[8]  Parker KL, Schimmer BP (1995) Transcriptional regulation of the genes encoding the cytochrome P-450 steroid hydroxylases. Vit and Horm 51: 339–370.
[9]  Stocco DM (2001) StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63: 213.
[10]  Jefcoate C (2004) High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex. J Clin Invest 110: 881–890.
[11]  Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56: 945–993.
[12]  John ME, John MC, Boggaram V, Simpson ER, Waterman MR (1986) Transcriptional regulation of steroid hydroxylase genes by corticotropin. Proc Nat Acad Sci USA 83: 4715–4719.
[13]  Waterman MR (1994) Biochemical diversity of cAMP-dependent transcription of steroid hydroxylase genes in the adrenal cortex. J Biol Chem 269: 27783–27786.
[14]  de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396: 474–477.
[15]  Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282: 2275–2279.
[16]  Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577: 5–15.
[17]  Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31: 680–686.
[18]  Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85: 1303–1342.
[19]  Liu H, Enyeart JA, Enyeart JJ (2008) ACTH inhibits bTREK-1 K+ channels through multiple cAMP-dependent signaling pathways. J Gen Physiol 132: 279–294.
[20]  Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine Reviews 25: 947–970.
[21]  Lund J, Ahlgren R, Wu DH, Kagimoto M, Simpson ER, Waterman MR (1990) Transcriptional regulation of the bovine CYP17 (P-450(17)alpha) gene. Identification of two cAMP regulatory regions lacking the consensus cAMP-responsive element (CRE). J Biol Chem 265: 3304–3312.
[22]  Kagawa N, Waterman MR (1990) cAMP-dependent transcription of the human CYP21B (P-450C21) gene requires a cis-regulatory element distinct from the consensus cAMP-regulatory element. J Biol Chem 265: 11299–11305.
[23]  Waterman MR, Bischof LJ (1997) Cytochromes P450 12: diversity of ACTH (cAMP)-dependent transcription of bovine steroid hydroxylase genes. FASEB J 11: 419–427.
[24]  Ahlgren R, Simpson ER, Waterman MR, Lund J (1990) Characterization of the promoter/regulatory region of the bovine CYP11A (P-450scc) gene. Basal and cAMP-dependent expression. J Biol Chem 265: 3313–3319.
[25]  Roesler WJ, Vandenbark GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263: 9063–9066.
[26]  Enyeart JJ, Mlinar B, Enyeart JA (1996) Adrenocorticotropic hormone and cAMP inhibit noninactivating K+ current in adrenocortical cells by an A-kinase-independent mechanism requiring ATP hydrolysis. J Gen Physiol 108: 251–264.
[27]  Barbara J-G, Takeda K (1995) Voltage-dependent currents and modulation of calcium channel expression in zona fasciculata cells from rat adrenal gland. J Physiol (London) 488: 609–622.
[28]  Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nature Cell Biology 4: 901–906.
[29]  Christensen AE, Sleheim F, de Rooij J, Dremier S, Schwede F, Dao K, Martinez A, Maenhaut C, Bos JL, Genieser HG, Doskeland SO (2003) cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278: 35394–35402.
[30]  Holz GG, Chepurny OG, Schwede F (2008) Epac-selective cAMP analogs: New tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signalling 20: 10–20.
[31]  Enyeart JJ, Gomora JC, Xu L, Enyeart JA (1997) Adenosine triphosphate activates a noninactivating K+ current in adrenal cortical cells through nonhydrolytic binding. J Gen Physiol 110: 679–692.
[32]  Enyeart JA, Danthi SJ, Enyeart JJ (2003) Corticotropin Induces the Expression of TREK-1 mRNA and K+ Current in Adrenocortical Cells. Mol Pharmacol 64: 132–142.
[33]  Waterman MR, Simpson ER (1988) Regulation of steroid hydroxylase gene expression is multifactorial in nature. Recent Prog Horm Res 45: 532–566.
[34]  Zuber MX, John ME, Okamura T, Simpson ER, Waterman MR (1986) Bovine adrenocortical cytochrome P-45017α: regulation of gene expression by ACTH and elucidation of primary sequence. J Biol Chem 261: 2475–2482.
[35]  Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, Schwede F, Genieser HG, Bos JL, Doskeland SO, Beavo JA, Butt E (2008) Cyclic nucleotide analogs as probes of signaling pathways. Nature Methods 5: 277–278.
[36]  Price NC, Stevens L (1999) Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins. New York: Oxford University Press.
[37]  Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocrine Reviews 17: 221–244.
[38]  Venepally P, Waterman MR (1995) Two Sp1-binding sites mediate cAMP-induced transcription of the bovine CYP11A gene through the protein kinase A signaling pathway. J Biol Chem 270: 25402–25410.
[39]  Moyle WR, Kong YC, Ramachandran J (1973) Steroidogenesis and cyclic adenosine 3′,5′-monophosphate accumulation in rat adrenal cells. J Biol Chem 248,7: 2409–2417.
[40]  Yamazaki T, Kimoto T, Higuchi K, Ohta Y, Kawato S, Kominami S (1998) Calcium ion as a second messenger for o-nitrophenylsulfenyl-adrenocorticotropi?n(NPS-ACTH) and ACTH in bovine adrenal steroidogenesis. Endocrinology 139: 4765–4771.
[41]  Wickiser JK, Cheah MT, Breaker RR, Crothers DM (2005) The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44: 13404–13414.
[42]  Wakeman CA, Winkler WC, Dance CE3 (2007) Structural features of metabolite-sensing riboswitches. Trends Biochem Sci 32: 415–424.
[43]  Laxman S, Riechers A, Sadilek M, Schwede F, Beavo JA (2006) Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci U S A 103: 19194–19199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133