Autophagy has been emerging as a novel cytoprotective mechanism to increase tumor cell survival under conditions of metabolic stress and hypoxia as well as to escape chemotherapy-induced cell death. To elucidate whether autophagy might also protect cancer cells from the growth inhibitory effects of targeted therapies, we evaluated the autophagic status of preclinical breast cancer models exhibiting auto-acquired resistance to the anti-HER2 monoclonal antibody trastuzumab (Tzb). We first examined the basal autophagic levels in Tzb-naive SKBR3 cells and in two pools of Tzb-conditioned SKBR3 cells (TzbR), which optimally grow in the presence of Tzb doses as high as 200 μg/ml Tzb. Fluorescence microscopic analyses revealed that the number of punctate LC3 structures -a hallmark of autophagy- was drastically higher in Tzb-refractory cells than in Tzb-sensitive SKBR3 parental cells. Immunoblotting analyses confirmed that the lipidation product of the autophagic conversion of LC3 was accumulated to high levels in TzbR cells. High levels of the LC3 lipidated form in Tzb-refractory cells were accompanied by decreased p62/sequestosome-1 protein expression, a phenomenon characterizing the occurrence of increased autophagic flux. Moreover, increased autophagy was actively used to survive Tzb therapy as TzbR pools were exquisitely sensitive to chemical inhibitors of autophagosomal formation/function. Knockdown of LC3 expression via siRNA similarly resulted in reduced TzbR cell proliferation and supra-additively interacted with Tzb to re-sensitize TzbR cells. Sub-groups of Tzb-naive SKBR3 parental cells accumulated LC3 punctate structures and decreased p62 expression after treatment with high-dose Tzb, likely promoting their own resistance. This is the first report showing that HER2-overexpressing breast cancer cells chronically exposed to Tzb exhibit a bona fide up-regulation of the autophagic activity that efficiently works to protect breast cancer cells from the growth-inhibitory effects of Tzb. Therapeutic targeting autophagosome formation/function might represent a novel molecular avenue to reduce the emergence of Tzb resistance in HER2-dependent breast carcinomas.
References
[1]
Pegram MD, Konecny G, Slamon DJ (2000) The molecular and cellular biology of HER2/neu gene amplification/overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res 103: 57–75.
[2]
Lan KH, Lu CH, Yu D (2005) Mechanisms of trastuzumab resistance and their clinical implications. Ann N Y Acad Sci 1059: 70–75.
[3]
Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232: 123–138.
[4]
Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3: 269–280.
[5]
Nahta R, Esteva FJ (2006) HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 8: 215.
Menendez JA, Lupu R (2007) Transphosphorylation of kinase-dead HER3 and breast cancer progression: a new standpoint or an old concept revisited? Breast Cancer Res 9: 111.
[8]
Jin Q, Esteva FJ (2008) Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia 13: 485–498.
[9]
Price-Schiavi SA, Jepson S, Li P, Arango M, Rudland PS, et al. (2002) Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer 99: 783–791.
[10]
Nagy P, Friedl?nder E, Tanner M, Kapanen AI, Carraway KL, et al. (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65: 473–482.
[11]
Altundag O, Altundag K, Ozcakar B, Silay YS (2005) HER2/neu intragenic kinase domain mutations may be major determinant of response to trastuzumab or specific kinase inhibitors in non-small cell lung cancer patients. Lung Cancer 49: 279–280.
[12]
Cappuzzo F, Bemis L, Varella-Garcia M (2006) HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N Engl J Med 354: 2619–2621.
[13]
Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, et al. (2006) HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10: 25–38.
[14]
Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, et al. (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61: 4744–4749.
[15]
Liu X, Fridman JS, Wang Q, Caulder E, Yang G, et al. (2006) Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab. Cancer Biol Ther 5: 648–656.
[16]
Scaltriti M, Rojo F, Oca?a A, Anido J, Guzman M, et al. (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 2007 99: 628–638.
[17]
Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93: 1852–1857.
[18]
Lu Y, Zi X, Pollak M (2004) Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 108: 334–341.
[19]
Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ (2005) Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65: 11118–11128.
[20]
Esparís-Ogando A, Oca?a A, Rodríguez-Barrueco R, Ferreira L, Borges J, et al. (2008) Synergic antitumoral effect of an IGF-IR inhibitor and trastuzumab on HER2-overexpressing breast cancer cells. Ann Oncol 19: 1860–1869.
[21]
Ropero S, Menéndez JA, Vázquez-Martín A, Montero S, Cortés-Funes H, et al. (2004) Trastuzumab plus tamoxifen: anti-proliferative and molecular interactions in breast carcinoma. Breast Cancer Res Treat 86: 125–137.
[22]
Oca?a A, Cruz JJ, Pandiella A (2006) Trastuzumab and antiestrogen therapy: focus on mechanisms of action and resistance. Am J Clin Oncol 29: 90–95.
[23]
du Manoir JM, Francia G, Man S, Mossoba M, Medin JA, et al. (2006) Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 12(3 Pt 1): 904–916.
[24]
Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ (2004) P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 64: 3981–3986.
[25]
Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, et al. (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: 117–127.
[26]
Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, et al. (2007) Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 13: 5883–5888.
[27]
Park BH, Davidson NE (2007) PI3 kinase activation and response to Trastuzumab Therapy: what's neu with herceptin resistance? Cancer Cell 12: 297–299.
[28]
Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, et al. (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: 395–402.
[29]
Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, et al. (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68: 8022–8030.
[30]
Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, et al. (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 68: 9221–9230.
[31]
Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6: 439–448.
[32]
Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6: 1837–1849.
[33]
H?yer-Hansen M, J??ttel? M (2008) Autophagy: an emerging target for cancer therapy. Autophagy 4: 574–580.
[34]
Jin S, White E (2008) Tumor suppression by autophagy through the management of metabolic stress. Autophagy; 4: 563–566.
[35]
Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075.
[36]
Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3: 427–455.
[37]
Galluzzi L, Morselli E, Vicencio JM, Kepp O, Joza N, et al. (2008) Life, death and burial: multifaceted impact of autophagy. Biochem Soc Trans 36(Pt 5): 786–790.
[38]
Jin S, White E (2008) Tumor suppression by autophagy through the management of metabolic stress. Autophagy 4: 563–566.
[39]
Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23: 537–548.
[40]
Kondo Y, Kondo S (2006) Autophagy and cancer therapy. Autophagy 2: 85–90.
[41]
Hippert MM, O'Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66: 9349–9351.
[42]
Moretti L, Yang ES, Kim KW, Lu B (2007) Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Updat 10: 135–143.
[43]
Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6: 304–312.
[44]
Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13: 7271–7279.
[45]
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.
[46]
Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1: 84–91.
[47]
Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3: 542–545.
[48]
Tanida I, Yamaji T, Ueno T, Ishiura S, Kominami E, et al. (2008) Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls. Autophagy 4: 131–134.
[49]
Kimura S, Fujita N, Noda T, Yoshimori T (2009) Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 452: 1–12.
[50]
Bj?rk?y G, Lamark T, Brech A, Outzen H, Perander M, et al. (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171: 603–614.
[51]
Bj?rk?y G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2: 138–139.
[52]
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131–24145.
[53]
Ichimura Y, Kominami E, Tanaka K, Komatsu M (2008) Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy 4: 1063–1066.
[54]
Shvets E, Elazar Z (2008) Autophagy-independent incorporation of GFP-LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1. Autophagy 4: 1054–1056.
[55]
Mari?o G, Ugalde AP, Salvador-Montoliu N, Varela I, Quirós PM, et al. (2008) Premature aging in mice activates a systemic metabolic response involving autophagy induction. Hum Mol Genet 17: 2196–2211.
[56]
Mari?o G, López-Otín C (2008) Autophagy and aging: new lessons from progeroid mice. Autophagy 4: 807–809.
[57]
Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34: 259–269.
[58]
Kar R, Singha PK, Venkatachalam MA, Saikumar P (2009) A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene. (doi: 10.1038/onc.2009.118).
[59]
Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 31: 181–206.
[60]
Narayan M, Wilken JA, Harris LN, Baron AT, Kimbler KD, et al. (2009) Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 69: 2191–2194.
[61]
Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, et al. (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11: 448–457.
[62]
Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14: 548–558.
[63]
Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14: 500–510.
[64]
Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, et al. (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110: 313–322.
[65]
Samaddar JS, Gaddy VT, Duplantier J, Thandavan SP, Shah M, et al. (2008) A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol Cancer Ther 7: 2977–2987.
[66]
Qadir MA, Kwok B, Dragowska WH, To KH, Le D, et al. (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112: 389–403.
[67]
Schoenlein PV, Periyasamy-Thandavan S, Samaddar JS, Jackson WH, Barrett JT (2009) Autophagy facilitates the progression of ERalpha-positive breast cancer cells to antiestrogen resistance. Autophagy 5: 400–403.
[68]
Samudio I, Kurinna S, Ruvolo P, Korchin B, Kantarjian H, et al. (2008) Inhibition of mitochondrial metabolism by methyl-2-cyano-3,12-dioxooleana-1,9-dien?e-28-oateinduces apoptotic or autophagic cell death in chronic myeloid leukemia cells. Mol Cancer Ther 7: 1130–1139.
[69]
Mishima Y, Terui Y, Mishima Y, Taniyama A, Kuniyoshi R, et al. (2008) Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors. Cancer Sci 99: 2200–2208.
[70]
Miselli F, Negri T, Gronchi A, Losa M, Conca E, et al. (2008) Is autophagy rather than apoptosis the regression driver in imatinib-treated gastrointestinal stromal tumors? Transl Oncol 1: 177–86.
[71]
Shingu T, Fujiwara K, B?gler O, Akiyama Y, Moritake K, et al. (2009) Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. Int J Cancer 124: 1060–1071.
[72]
Shingu T, Fujiwara K, B?gler O, Akiyama Y, Moritake K, et al. (2009) Stage-specific effect of inhibition of autophagy on chemotherapy-induced cytotoxicity. Autophagy 5: 537–539.
[73]
Zakeri Z, Melendez A, Lockshin RA (2008) Detection of autophagy in cell death. Methods Enzymol 442: 289–306.
[74]
Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, et al. (2008) LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol 33: 461–468.