[1] | Prentki M (1996) New insights into pancreatic beta-cell metabolic signaling in insulin secretion. Eur J Endocrinol 134: 272–286.
|
[2] | Prentki M, Joly E, El-Assaad W, Roduit R (2002) Malonyl-CoA Signaling, Lipid Partitioning, and Glucolipotoxicity: Role in beta-Cell Adaptation and Failure in the Etiology of Diabetes. Diabetes 51: Suppl 3S405–413.
|
[3] | Wiederkehr A, Wollheim CB (2008) Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic beta-cell. Cell Calcium 44: 64–76.
|
[4] | Nolan CJ, Prentki M (2008) The islet beta-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 19: 285–291.
|
[5] | Nolan CJ, Madiraju MS, Delghingaro-Augusto V, Peyot ML, Prentki M (2006) Fatty Acid Signaling in the {beta}-Cell and Insulin Secretion. Diabetes 55: Suppl 2S16–23.
|
[6] | Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116: 1802–1812.
|
[7] | Corkey BE, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, et al. (1989) A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. J Biol Chem 264: 21608–21612.
|
[8] | Wolf BA, Easom RA, McDaniel ML, Turk J (1990) Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans. J Clin Invest 85: 482–490.
|
[9] | Berne C (1975) The metabolism of lipids in mouse pancreatic islets. The biosynthesis of triacylglycerols and phospholipids. Biochem J 152: 667–673.
|
[10] | Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3: 153–165.
|
[11] | Hansotia T, Drucker DJ (2005) GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice. Regul Pept 128: 125–134.
|
[12] | Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, et al. (1993) Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 138: 159–166.
|
[13] | Girard J (2008) The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions. Diabetes Metab 34: 550–559.
|
[14] | Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84: 3434–3438.
|
[15] | Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, et al. (2001) Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 50: 2237–2243.
|
[16] | Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214: 829–835.
|
[17] | Buteau J, Foisy S, Joly E, Prentki M (2003) Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52: 124–132.
|
[18] | Dillon JS, Lu M, Bowen S, Homan LL (2005) The recombinant rat glucagon-like peptide-1 receptor, expressed in an alpha-cell line, is coupled to adenylyl cyclase activation and intracellular calcium release. Exp Clin Endocrinol Diabetes 113: 182–189.
|
[19] | Holz GG (2004) New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells. Horm Metab Res 36: 787–794.
|
[20] | Holz GG (2004) Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53: 5–13.
|
[21] | Holz GG, Heart E, Leech CA (2008) Synchronizing Ca2+ and cAMP oscillations in pancreatic beta-cells: a role for glucose metabolism and GLP-1 receptors? Focus on “regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach”. Am J Physiol Cell Physiol 294: C4–6.
|
[22] | McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70: 391–425.
|
[23] | Antinozzi PA, Ishihara H, Newgard CB, Wollheim CB (2002) Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell: a survey of four fuel secretagogues. J Biol Chem 277: 11746–11755.
|
[24] | Marynissen G, Leclercq-Meyer V, Sener A, Malaisse WJ (1990) Perturbation of pancreatic islet function in glucose-infused rats. Metabolism 39: 87–95.
|
[25] | Roche E, Assimacopoulos-Jeannet F, Witters LA, Perruchoud B, Corkey BE, et al. (1997) Induction by glucose of genes coding for glycolytic enzymes in a pancreatic β-cell line (INS-1). J Biol Chem 272: 3091–3098.
|
[26] | Zhang TM, Maggetto C, Malaisse WJ (1994) Hexose metabolism in pancreatic islets: glycogen synthase and glycogen phosphorylase activities. Biochem Med Metab Biol 51: 129–139.
|
[27] | Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, et al. (2004) Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47: 806–815.
|
[28] | Li L, El-Kholy W, Rhodes CJ, Brubaker PL (2005) Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B. Diabetologia 48: 1339–1349.
|
[29] | Park S, Dong X, Fisher TL, Dunn S, Omer AK, et al. (2006) Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem 281: 1159–1168.
|
[30] | Ishiki M, Klip A (2005) Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 146: 5071–5078.
|
[31] | Cazzolli R, Carpenter L, Biden TJ, Schmitz-Peiffer C (2001) A role for protein phosphatase 2A-like activity, but not atypical protein kinase Czeta, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. Diabetes 50: 2210–2218.
|
[32] | Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG, et al. (1997) Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J Biol Chem 272: 7713–7719.
|
[33] | Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, et al. (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280: 32081–32089.
|
[34] | da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, et al. (2003) Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371: 761–774.
|
[35] | Prentki M, Madiraju SR (2008) Glycerolipid metabolism and signaling in health and disease. Endocr Rev 29: 647–676.
|
[36] | Watt MJ, Holmes AG, Pinnamaneni SK, Garnham AP, Steinberg GR, et al. (2006) Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 290: E500–508.
|
[37] | Peyot ML, Nolan CJ, Soni K, Joly E, Lussier R, et al. (2004) Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 53: 1733–1742.
|
[38] | Nolan CJ, Leahy JL, Delghingaro-Augusto V, Moibi J, Soni K, et al. (2006) Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 49: 2120–2130.
|
[39] | Cunningham BA, Richard AM, Dillon JS, Daley JT, Civelek VN, et al. (2003) Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets. Biochem J 369: 173–178.
|
[40] | Yaney GC, Civelek VN, Richard AM, Dillon JS, Deeney JT, et al. (2001) Glucagon-like peptide 1 stimulates lipolysis in clonal pancreatic beta- cells (HIT).[In Process Citation]. Diabetes 50: 56–62.
|
[41] | Gotoh M, Maki T, Satomi S, Porter J, Bonner-Weir S, et al. (1987) Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43: 725–730.
|
[42] | Heart E, Smith PJ (2007) Rhythm of the beta-cell oscillator is not governed by a single regulator: multiple systems contribute to oscillatory behavior. Am J Physiol Endocrinol Metab 292: E1295–1300.
|
[43] | Massa ML, Borelli MI, Del Zotto H, Gagliardino JJ (2001) Changes induced by sucrose administration on glucose metabolism in pancreatic islets in normal hamsters. J Endocrinol 171: 551–556.
|
[44] | Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, et al. (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 566: 173–188.
|
[45] | Chepurny OG, Holz GG (2007) A novel cyclic adenosine monophosphate responsive luciferase reporter incorporating a nonpalindromic cyclic adenosine monophosphate response element provides optimal performance for use in G protein coupled receptor drug discovery efforts. J Biomol Screen 12: 740–746.
|
[46] | Osbourn DM, Sanger RH, Smith PJ (2005) Determination of single-cell oxygen consumption with impedance feedback for control of sample-probe separation. Anal Chem 77: 6999–7004.
|
[47] | Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96: 13807–13812.
|
[48] | Ainscow EK, Rutter GA (2002) Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism. Diabetes 51: Suppl 1S162–170.
|
[49] | Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.
|
[50] | Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 283: 8723–8735.
|
[51] | Widenmaier SB, Sampaio AV, Underhill TM, McIntosh CH (2009) Non-canonical activation of Akt/PKB in beta -cells by the incretin hormone glucose-dependent insulinotropic polypeptide (GIP). J Biol Chem 284: 10764–10773.
|
[52] | Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP, et al. (2003) Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem J 369: 287–299.
|
[53] | Roduit R, Nolan C, Alarcon C, Moore P, Barbeau A, et al. (2004) A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes 53: 1007–1019.
|
[54] | Herrero L, Rubi B, Sebastian D, Serra D, Asins G, et al. (2005) Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion. Diabetes 54: 462–471.
|
[55] | Maechler P (2002) Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 59: 1803–1818.
|
[56] | Mulder H, Yang S, Winzell MS, Holm C, Ahren B (2004) Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53: 122–128.
|
[57] | Sorhede Winzell M, Ahren B (2004) Glucagon-like peptide-1 and islet lipolysis. Horm Metab Res 36: 795–803.
|
[58] | Richards SK, Parton LE, Leclerc I, Rutter GA, Smith RM (2005) Over-expression of AMP-activated protein kinase impairs pancreatic {beta}-cell function in vivo. J Endocrinol 187: 225–235.
|
[59] | Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18: 451–463.
|
[60] | Malsam J, Kreye S, Sollner TH (2008) Membrane fusion: SNAREs and regulation. Cell Mol Life Sci 65: 2814–2832.
|
[61] | Li F, Pincet F, Perez E, Eng WS, Melia TJ, et al. (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14: 890–896.
|
[62] | Matschinsky FM (1996) A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45: 223–241.
|
[63] | Sener A, Rasschaert J, Malaisse WJ (1990) Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function. Biochim Biophys Acta 1019: 42–50.
|