BAD, a pro-apoptotic protein of the Bcl-2 family, has recently been identified as an integrator of several anti-apoptotic signaling pathways in prostate cancer cells. Thus, activation of EGFR, GPCRs or PI3K pathway leads to BAD phosphorylation and inhibition of apoptosis. Increased levels of BAD in prostate carcinomas have also been reported. It appears contradictory that instead of limiting expression of pro-apoptotic protein, prostate cancer cells choose to increase BAD levels while keeping it under tight phosphorylation control. Analysis of the effect of BAD on prostate cancer xenografts has shown that increased BAD expression enhances tumor growth, while knockdown of BAD expression by shRNA inhibits tumor growth. Tissue culture experiments demonstrated that increased BAD expression stimulates proliferation of prostate cancer cells. These results suggest that increased expression of BAD provides a proliferative advantage to prostate tumors, while BAD dephosphorylation increases sensitivity of prostate cancer cells to apoptosis. Combination of proliferative and apoptotic properties prompts prostate cancer cells to be “addicted” to increased levels of phosphorylated BAD. Thus, kinases that phosphorylate BAD are plausible therapeutic targets; while monitoring BAD phosphorylation could be used to predict tumor response to treatments.
References
[1]
Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. (2008) Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.
[2]
Hadaschik BA, Gleave ME (2007) Therapeutic options for hormone-refractory prostate cancer in 2007. Urol Oncol 25: 413–419.
[3]
Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45.
[4]
Giri D, Ozen M, Ittmann M (2001) Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 159: 2159–2165.
[5]
Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, et al. (2007) Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 12: 572–585.
[6]
Sastry KS, Smith AJ, Karpova Y, Datta SR, Kulik G (2006) Diverse antiapoptotic signaling pathways activated by vasoactive intestinal polypeptide, epidermal growth factor, and phosphatidylinositol 3-kinase in prostate cancer cells converge on BAD. J Biol Chem 281: 20891–20901.
[7]
Djakiew D (2000) Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate 42: 150–160.
[8]
Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, et al. (1996) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148: 1567–1576.
[9]
Krajewska M, Krajewski S, Banares S, Huang X, Turner B, et al. (2003) Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res 9: 4914–4925.
[10]
Yang E, Zha J, Jockel J, Boise LH, Thompson CB, et al. (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80: 285–291.
[11]
Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87: 619–628.
[12]
Datta SR, Katsov A, Hu L, Petros A, Fesik SW, et al. (2000) 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6: 41–51.
[13]
Royuela M, Arenas MI, Bethencourt FR, Sanchez-Chapado M, Fraile B, et al. (2001) Immunoexpressions of p21, Rb, mcl-1 and bad gene products in normal, hyperplastic and carcinomatous human prostates. Eur Cytokine Netw 12: 654–663.
[14]
Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33: 401–406.
[15]
Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, et al. (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54: 2577–2581.
[16]
Maslyar DJ, Aoki M, Vogt PK (2001) The growth-promoting activity of the Bad protein in chicken embryo fibroblasts requires binding to protein 14-3-3. Oncogene 20: 5087–5092.
[17]
Chattopadhyay A, Chiang CW, Yang E (2001) BAD/BCL-[X(L)] heterodimerization leads to bypass of G0/G1 arrest. Oncogene 20: 4507–4518.
[18]
Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, et al. (2003) Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22: 5459–5470.
[19]
Mok CL, Gil-Gomez G, Williams O, Coles M, Taga S, et al. (1999) Bad can act as a key regulator of T cell apoptosis and T cell development. J Exp Med 189: 575–586.
[20]
Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, et al. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424: 952–956.
[21]
Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, et al. (2008) Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 14: 144–153.
[22]
Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13: 1351–1359.
[23]
Warburg O (1956) On the origin of cancer cells. Science 123: 309–314.
[24]
Fernando R, Foster JS, Bible A, Strom A, Pestell RG, et al. (2007) Breast cancer cell proliferation is inhibited by BAD: regulation of cyclin D1. J Biol Chem 282: 28864–28873.