In the budding yeast Saccharomyces cerevisiae the protein phosphatase Sit4 and four associated proteins (Sap4, Sap155, Sap185, and Sap190) mediate G1 to S cell cycle progression and a number of signaling events controlled by the target of rapamycin TOR signaling cascade. Sit4 and the Sap proteins are ubiquitously conserved and their human orthologs, PP6 and three PP6R proteins, share significant sequence identity with their yeast counterparts. However, relatively little is known about the functions of the PP6 and PP6R proteins in mammalian cells. Here we demonstrate that the human PP6R proteins physically interact with Sit4 when expressed in yeast cells. Remarkably, expression of PP6R2 and PP6R3 but not expression of PP6R1 rescues the growth defect and rapamycin hypersensitivity of yeast cells lacking all four Saps, and these effects require Sit4. Moreover, PP6R2 and PP6R3 enhance cyclin G1 gene expression and DNA synthesis, and partially abrogate the G1 cell cycle delay and the budding defect of the yeast quadruple sap mutant strain. In contrast, the human PP6R proteins only modestly support nitrogen catabolite gene expression and are unable to restore normal levels of eIF2α phosphorylation in the quadruple sap mutant strain. These results illustrate that the human PP6-associated proteins are capable of providing distinct rapamycin-sensitive and Sit4-dependent Sap functions in the heterologous context of the yeast cell. We hypothesize that the human Saps may play analogous roles in mTORC1-PP6 signaling events in metazoans.
References
[1]
Di Como CJ, Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10: 1904–1916.
[2]
Fernandez-Sarabia MJ, Sutton A, Zhong T, Arndt KT (1992) SIT4 protein phosphatase is required for the normal accumulation of SWI4, CLN1, CLN2, and HCS26 RNAs during late G1. Genes Dev 6: 2417–2428.
[3]
Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689–692.
[4]
Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, et al. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275: 35727–35733.
[5]
Rohde JR, Campbell S, Zurita-Martinez SA, Cutler NS, Ashe M, et al. (2004) TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors. Mol Cell Biol 24: 8332–8341.
[6]
Torres J, Di Como CJ, Herrero E, De La Torre-Ruiz MA (2002) Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem 277: 43495–43504.
[7]
Chen J, Peterson RT, Schreiber SL (1998) Alpha4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun 247: 827–832.
[8]
Murata K, Wu J, Brautigan DL (1997) B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc Natl Acad Sci U S A 94: 10624–10629.
[9]
Kong M, Bui TV, Ditsworth D, Gruber JJ, Goncharov D, et al. (2007) The PP2A-associated protein alpha4 plays a critical role in the regulation of cell spreading and migration. J Biol Chem 282: 29712–29720.
[10]
Krauss S, Foerster J, Schneider R, Schweiger S (2008) Protein phosphatase 2A and rapamycin regulate the nuclear localization and activity of the transcription factor GLI3. Cancer Res 68: 4658–4665.
[11]
Bastians H, Ponstingl H (1996) The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. J Cell Sci 109 (Pt 12): 2865–2874.
[12]
Luke MM, Della Seta F, Di Como CJ, Sugimoto H, Kobayashi R, et al. (1996) The SAP, a new family of proteins, associate and function positively with the Sit4 phosphatase. Mol Cell Biol 16: 2744–2755.
[13]
Cherkasova VA, Hinnebusch AG (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase Gcn2. Genes Dev 17: 859–872.
[14]
Kubota H, Obata T, Ota K, Sasaki T, Ito T (2003) Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase Gcn2. J Biol Chem 278: 20457–20460.
[15]
Jablonowski D, Butler AR, Fichtner L, Gardiner D, Schaffrath R, et al. (2001) Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 159: 1479–1489.
[16]
Manlandro CM, Haydon DH, Rosenwald AG (2005) Ability of Sit4p to promote K+ efflux via Nha1p is modulated by Sap155p and Sap185p. Eukaryot Cell 4: 1041–1049.
[17]
Stefansson B, Brautigan DL (2006) Protein phosphatase 6 subunit with conserved Sit4-associated protein domain targets IkappaBepsilon. J Biol Chem 281: 22624–22634.
Jablonowski D, Fichtner L, Stark MJ, Schaffrath R (2004) The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Mol Biol Cell 15: 1459–1469.
[20]
Sutton A, Immanuel D, Arndt KT (1991) The Sit4 protein phosphatase functions in late G1 for progression into S phase. Mol Cell Biol 11: 2133–2148.
[21]
Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1: 22–32.
[22]
Hinnebusch A (2000) Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In: Sonenberg NJWBH, Mathews MB, editors. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. pp. 185–243.
[23]
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, et al. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21: 4347–4368.
[24]
MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7: 591–600.
[25]
Stefansson B, Brautigan DL (2007) Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Cell Cycle 6: 1386–1392.
[26]
Yang S-I, Lickteig RL, Estes R, Rundell GW, Mumby MC (1991) Control of protein phosphatase 2A by the simian virus 40 small-t antigen. Mol Cell Biol 11: 1988–1995.
[27]
Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909.
[28]
Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.
[29]
Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, et al. (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758.
[30]
De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38: 1476–1481.
[31]
Alarcon CM, Cardenas ME, Heitman J (1996) Mammalian RAFT1 kinase domain provides rapamycin-sensitive TOR function in yeast. Genes Dev 10: 279–288.
[32]
Dolinski K, Scholz C, Muir RS, Rospert S, Schmid FX, et al. (1997) Functions of FKBP12 and mitochondrial cyclophilin active site residues in vitro and in vivo in Saccharomyces cerevisiae. Mol Biol Cell 8: 2267–2280.
[33]
Rodriguez-Escudero I, Roelants FM, Thorner J, Nombela C, Molina M, et al. (2005) Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochem J 390: 613–623.
[34]
Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119–122.
[35]
Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58: 201–216.
[36]
Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16: 339–346.
[37]
Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20: 426–427.
[38]
Haase SB, Reed SI (2002) Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle 1: 132–136.
[39]
Lew DJ, Reed SI (1993) Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol 120: 1305–1320.
[40]
Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13: 3271–3279.