Decoding the complexity of multicellular organisms requires analytical procedures to overcome the limitations of averaged measurements of cell populations, which obscure inherent cell-cell heterogeneity and restrict the ability to distinguish between the responses of individual cells within a sample. For example, defining the timing, magnitude and the coordination of cytokine responses in single cells is critical for understanding the development of effective immunity. While approaches to measure gene expression from single cells have been reported, the absolute performance of these techniques has been difficult to assess, which likely has limited their wider application. We describe a straightforward method for simultaneously measuring the expression of multiple genes in a multitude of single-cell samples using flow cytometry, parallel cDNA synthesis, and quantification by real-time PCR. We thoroughly assess the performance of the technique using mRNA and DNA standards and cell samples, and demonstrate a detection sensitivity of ~30 mRNA molecules per cell, and a fractional error of 15%. Using this method, we expose unexpected heterogeneity in the expression of 5 immune-related genes in sets of single macrophages activated by different microbial stimuli. Further, our analyses reveal that the expression of one ‘pro-inflammatory’ cytokine is not predictive of the expression of another ‘pro-inflammatory’ cytokine within the same cell. These findings demonstrate that single-cell approaches are essential for studying coordinated gene expression in cell populations, and this generic and easy-to-use quantitative method is applicable in other areas in biology aimed at understanding the regulation of cellular responses.
References
[1]
Ramsey S, Ozinsky A, Clark A, Smith KD, de Atauri P, et al. (2006) Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philos Trans R Soc Lond B Biol Sci 361: 495–506.
[2]
Bar-Even A, Paulsson J, Maheshri N, Carmi M, O'Shea E, et al. (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38: 636–643.
[3]
Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, et al. (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437: 699–706.
[4]
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297: 1183–1186.
[5]
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, et al. (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441: 840–846.
[6]
Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31: 69–73.
[7]
McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94: 814–819.
[8]
Vilar JM, Guet CC, Leibler S (2003) Modeling network dynamics: the lac operon, a case study. J Cell Biol 161: 471–476.
[9]
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6: 377–382.
[10]
Kamme F, Salunga R, Yu J, Tran DT, Zhu J, et al. (2003) Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci 23: 3607–3615.
[11]
Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, et al. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811–815.
[12]
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5: 877–879.
[13]
Spurgeon SL, Jones RC, Ramakrishnan R (2008) High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE 3: e1662.
[14]
Morrison T, Hurley J, Garcia J, Yoder K, Katz A, et al. (2006) Nanoliter high throughput quantitative PCR. Nucleic Acids Res 34: e123.
[15]
Qin J, Jones RC, Ramakrishnan R (2008) Studying copy number variations using a nanofluidic platform. Nucleic Acids Res 36: e116.
[16]
Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS ONE 3: e2876.
[17]
Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, et al. (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26: 317–325.
[18]
Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339: 62–66.