全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

DOI: 10.1371/journal.pone.0006440

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to predict kinase substrate preferences from the primary structure, hampering the understanding of kinase function in physiology and prompting the development of technologies that allow easy assessment of kinase substrate consensus sequences. Hence, we decided to explore the usefulness of phosphorylation of peptide arrays comprising of 1176 different peptide substrates with recombinant kinases for determining kinase substrate preferences, based on the contribution of individual amino acids to total array phosphorylation. Employing this technology, we were able to determine the consensus peptide sequences for substrates of both c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8, two highly homologous kinases with distinct signalling roles in cellular physiology. The results show that although consensus sequences for these two kinases identified through our analysis share important chemical similarities, there is still some sequence specificity that could explain the different biological action of the two enzymes. Thus peptide arrays are a useful instrument for deducing substrate consensus sequences and highly homologous kinases can differ in their requirement for phosphorylation events.

References

[1]  Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82: 111–121.
[2]  Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411: 355–365.
[3]  Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410: 37–40.
[4]  Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298: 1912–1934.
[5]  Kreegipuu A, Blom N, Brunak S, Jarv J (1998) Statistical analysis of protein kinase specificity determinants. FEBS Lett 430: 45–50.
[6]  Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294: 1351–1362.
[7]  Brinkworth RI, Breinl RA, Kobe B (2003) Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 100: 74–79.
[8]  Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, et al. (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol 4: 973–982.
[9]  Lueking A, Horn M, Eickhoff H, Bussow K, Lehrach H, et al. (1999) Protein microarrays for gene expression and antibody screening. Anal Biochem 270: 103–111.
[10]  Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, et al. (2000) Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278: 123–131.
[11]  MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289: 1760–1763.
[12]  Zhu H, Snyder M (2001) Protein arrays and microarrays. Curr Opin Chem Biol 5: 40–45.
[13]  Wenschuh H, Volkmer-Engert R, Schmidt M, Schulz M, Schneider-Mergener J, et al. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55: 188–206.
[14]  Falsey JR, Renil M, Park S, Li S, Lam KS (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem 12: 346–353.
[15]  Reineke U, Volkmer-Engert R, Schneider-Mergener J (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr Opin Biotechnol 12: 59–64.
[16]  Diks SH, Kok K, O'Toole T, Hommes DW, van DP, et al. (2004) Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells. J Biol Chem 279: 49206–49213.
[17]  Diella F, Cameron S, Gemund C, Linding R, Via A, et al. (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics 5: 79.
[18]  Lowenberg M, Tuynman J, Bilderbeek J, Gaber T, Buttgereit F, et al. (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106: 1703–1710.
[19]  Diks SH, Parikh K, van der SM, Joore J, Ritsema T, et al. (2007) Evidence for a minimal eukaryotic phosphoproteome? PLoS One 2: e777.
[20]  Parikh K, Poppema S, Peppelenbosch MP, Visser L (2009) Extracellular ligation-dependent CD45RB enzymatic activity negatively regulates lipid raft signal transduction. Blood 113: 594–603.
[21]  Parikh K, Peppelenbosch MP, Ritsema T (2009) Kinome profiling using peptide arrays in eukaryotic cells. Methods Mol Biol 527: 269–80, x.
[22]  van Baal JW, Diks SH, Wanders RJ, Rygiel AM, Milano F, et al. (2006) Comparison of kinome profiles of Barrett's esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res 66: 11605–11612.
[23]  Warne PH, Viciana PR, Downward J (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364: 352–355.
[24]  Moodie SA, Willumsen BM, Weber MJ, Wolfman A (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260: 1658–1661.
[25]  Koide H, Satoh T, Nakafuku M, Kaziro Y (1993) GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells. Proc Natl Acad Sci U S A 90: 8683–8686.
[26]  Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214.
[27]  Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, et al. (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci U S A 80: 4218–4222.
[28]  Jansen HW, Lurz R, Bister K, Bonner TI, Mark GE, et al. (1984) Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 307: 281–284.
[29]  Moelling K, Heimann B, Beimling P, Rapp UR, Sander T (1984) Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 312: 558–561.
[30]  Lowenberg M, Verhaar A, van den BB, ten KF, van DS, et al. (2005) Specific inhibition of c-Raf activity by semapimod induces clinical remission in severe Crohn's disease. J Immunol 175: 2293–2300.
[31]  Ballester A, Velasco A, Tobena R, Alemany S (1998) Cot kinase activates tumor necrosis factor-alpha gene expression in a cyclosporin A-resistant manner. J Biol Chem 273: 14099–14106.
[32]  Tsatsanis C, Patriotis C, Bear SE, Tsichlis PN (1998) The Tpl-2 protooncoprotein activates the nuclear factor of activated T cells and induces interleukin 2 expression in T cell lines. Proc Natl Acad Sci U S A 95: 3827–3832.
[33]  Ballester A, Tobena R, Lisbona C, Calvo V, Alemany S (1997) Cot kinase regulation of IL-2 production in Jurkat T cells. J Immunol 159: 1613–1618.
[34]  Belich MP, Salmeron A, Johnston LH, Ley SC (1999) TPL-2 kinase regulates the proteolysis of the NF-kappaB-inhibitory protein NF-kappaB1 p105. Nature 397: 363–368.
[35]  Lin X, Cunningham ET Jr, Mu Y, Geleziunas R, Greene WC (1999) The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-kappaB acting through the NF-kappaB-inducing kinase and IkappaB kinases. Immunity 10: 271–280.
[36]  Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13: 2363–2371.
[37]  Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881–10890.
[38]  Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, et al. (1992) Raf-1 activates MAP kinase-kinase. Nature 358: 417–421.
[39]  Dent P, Haser W, Haystead TA, Vincent LA, Roberts TM, et al. (1992) Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257: 1404–1407.
[40]  Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, et al. (1992) Activation of the MAP kinase pathway by the protein kinase raf. Cell 71: 335–342.
[41]  Lin X, Mu Y, Cunningham ET Jr, Marcu KB, Geleziunas R, et al. (1998) Molecular determinants of NF-kappaB-inducing kinase action. Mol Cell Biol 18: 5899–5907.
[42]  Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 272: 952–960.
[43]  Obata T, Yaffe MB, Leparc GG, Piro ET, Maegawa H, et al. (2000) Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 275: 36108–36115.
[44]  Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, et al. (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16: 6486–6493.
[45]  Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67: 821–855.
[46]  Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, et al. (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 14: 2777–2785.
[47]  Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, et al. (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3: 265–274.
[48]  Hasegawa H, Nakai M, Tanimukai S, Taniguchi T, Terashima A, et al. (2001) Microglial signaling by amyloid beta protein through mitogen-activated protein kinase mediating phosphorylation of MARCKS. Neuroreport 12: 2567–2571.
[49]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133