全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Novel Poly-Dopamine Adhesive for a Halloysite Nanotube-Ru(bpy)32+ Electrochemiluminescent Sensor

DOI: 10.1371/journal.pone.0006451

Full-Text   Cite this paper   Add to My Lib

Abstract:

Herein, for the first time, the electrochemiluminescent sensor based on Ru(bpy)32+-modified electrode using dopamine as an adhesive was successfully developed. After halloysite nanotube slurry was cast on a glassy carbon electrode and dried, an alkaline dopamine solution was added on the electrode surface. Initially, polydopamine belts with dimensions of tens to hundreds of nanometers formed via oxidization of the dopamine by ambient oxygen. As the incubation time increased, the nanobelts became broader and then united with each other to form a polydopamine film. The halloysite nanotubes were embedded within the polydopamine film. The above electrode was soaked in Ru(bpy)32+ aqueous solution to adsorb Ru(bpy)32+ into the active sites of the halloysite nanotubes via cation-exchange procedure. Through this simple procedure, a Ru(bpy)32+-modified electrode was obtained using only 6.25 μg Ru(bpy)32+, 15.0 μg dopamine, and 9.0 μg halloysite nanotubes. The electrochemistry and electrochemiluminescence (ECL) of the modified electrode was investigated using tripropylamine (TPA) and nitrilotriacetic acid (NTA) as co-reactants. The different ECL behaviors of the modified electrode using NTA and TPA as well as the contact angle measurements reflected the hydrophilic character of the electrode. The results indicate that halloysite nanotubes have a high loading capacity for Ru(bpy)32+ and that dopamine is suitable for the preparation of modified electrodes.

References

[1]  Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318: 426–430.
[2]  Yu ME, Hwang J, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121: 5825–5826.
[3]  Waite JH (2008) Surface chemistry - Mussel power. Nature Mater 7: 8–9.
[4]  Zürcher S, W?ckerlin D, Bethuel Y, Malisova B, Textor M, et al. (2006) Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc 128: 1064–1065.
[5]  Dalsin JL, Hu B-H, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125: 4253–4258.
[6]  Xu C, Xu K, Gu H, Zheng R, Liu H, et al. (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126: 9938–9939.
[7]  Podsiadlo P, Liu Z, Paterson D, Messersmith PB, kotov NA (2007) Fusion of seashell nacre and marine bioadhesive analogs: High-strength nanocompoisite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylaianine polymer. Adv Mater 19: 949–955.
[8]  Miao WJ (2008) Electrochemiluminescence. Chem Rev 108: 2506–2553.
[9]  Wei H, Wang EK (2008) Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. TrAC-Trends Anal Chem 27: 447–459.
[10]  Pyati R, Richter MM (2007) ECL—Electrochemical luminescence. Annu Rep Prog Chem C 103: 12–78.
[11]  Guo ZH, Shen Y, Zhao F, Wang MK, Dong SJ (2004) Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)32+ multilayer films on ITO electrodes. Analyst 129: 657–663.
[12]  Liang PY, Chang PW, Wang CM (2003) Can clay emit light? Ru(bpy)32+-modified clay colloids and their application in the detection of glucose. J Electroanal Chem 560: 151–159.
[13]  Xing B, Yin X-B (2009) Electrochemiluminescence from Hydrophilic Thin Film Ru(bpy)32+-Modified Electrode Prepared Using Natural Halloysite Nanotubes and Polyacrylamide Gel. Biosens Bioelectron 24: 2939–2942.
[14]  Ye YP, Chen HB, Wu JS, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48: 6426–6433.
[15]  Ouyang RZ, Lei JP, Ju HX (2008) Surface molecularly imprinted nanowire for protein specific recognition. Chem Commun 5761–5763.
[16]  Choi HN, Yoon SH, Lyu YK, Lee WY (2007) Electrogenerated chemiluminese ethanol biosensor based on carbon nanotube-titania-nafion composite film. Electroanalysis 19: 459–465.
[17]  Zhang LH, Xu ZA, Sun XP, Dong SJ (2007) A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)32+-Au nanoparticles aggregates. Biosens Bioelectron 22: 1097–1100.
[18]  Li J, Xu Y, Wei H, Huo HT, Wang EK (2007) Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes. Anal Chem 79: 5439–5443.
[19]  Zhang LH, Dong SJ (2006) Electrogenerated chemiluminescence sensors using Ru(bpy)32+ doped in silica nanoparticles. Anal Chem 78: 5119–5123.
[20]  Khramov N, Collinson MM (2000) Electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) ion-exchanged in nafion-silica composite films. Anal Chem 72: 2943–2948.
[21]  Wang HY, Xu GB, Dong SJ (2003) Electrochemiluminescence sensor using tris(2,2′-bipyridyl)ruthenium(II) immobilized in Eastman-AQ55D-silica composite thin-films. Anal Chim Acta 480: 285–290.
[22]  Du Y, Qi B, Yang XR, Wang EK (2006) Synthesis of PtNPs/AQ/Ru(bpy)32+ colloid and its application as a sensitive solid-state electrochemiluminescence sensor material. J Phys Chem B 110: 21662–21666.
[23]  Bertoncello P, Dennany L, Forster RJ, Unwin PR (2007) Nafion - Tris(2-2′-bipyridyl)ruthenium(II) ultrathin Langmuir-Schaefer films: Redox catalysis and electrochemiluminescent properties. Anal Chem 79: 7549–7553.
[24]  Guo ZH, Shen Y, Wang MK, Zhao F, Dong SJ (2004) Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2,2′-bipyridyl)ruthen?ium(II)multilayer films on indium tin oxide electrodes. Anal Chem 76: 184–191.
[25]  Qian L, Yang XR (2007) One-step synthesis of Ru(2,2′-bipyridine)3Cl2-immobilized silica nanoparticles for use in electrogenerated chemiluminescence detection. Adv Funct Mater 17: 1353–1358.
[26]  Lee JK, Lee SH, Kim M, Kim H, Kim DH, et al. (2003) Organosilicate thin film containing Ru(bpy)32+ for an electrogenerated chemiluminescence (ECL) sensor. Chem Commun 1602–1603.
[27]  Sun XP, Du Y, Dong SJ, Wang EK (2005) Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal Chem 77: 8166–8169.
[28]  Kanoufi F, Zu Y, Bard AJ (2001) Homogeneous oxidation of trialkylamines by metal complexes and its impact on electrogenerated chemiluminescence in the trialkylamine/Ru(bpy)32+ system. J Phys Chem B 105: 210–216.
[29]  Miao WJ, Choi JP, Bard AJ (2003) Electrogenerated chemiluminescence 69: The tris(2,2′-bipyridine)ruthenium(II) /tri-n-propylamine (TPrA) system revisited - A new route involving TPrA? cation radicals. J Am Chem Soc 124: 14478–14485.
[30]  Noffsinger JB, Donielson ND (1987) Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2′-bipyridine)ruthenium(III). Anal Chem 59: 865–868.
[31]  Leland JK, Powell MJ (1990) Electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using tripropyl amine. J Electrochem Soc 137: 31273131.
[32]  Guo ZH, Dong SJ (2004) Electrogenerated chemiluminescence from Ru(bpy)(3)(2+) ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Anal Chem 76: 2683–2688.
[33]  Wang HY, Xu GB, Dong SJ (2001) Electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) immobilized in poly(p-styrenesulfonate)-silica-Triton X-100 composite thin-films. Analyst 126: 1095–1099.
[34]  Wang HY, Xu GB, Dong SJ (2002) Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium (II) ion-exchanged in polyelectrolyte-silica composite thin-films. Electroanalysis 14: 853–957.
[35]  Wang HY, Xu GB, Dong SJ (2001) Electrochemistry and electrochemiluminescence of stable tris(2,2′-bipyridyl)ruthenium(II) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode. Talanta 55: 61–67.
[36]  Yin XB, Sha BB, Zhang XH, He XW, Xie H (2008) The factors affecting the electrochemiluminescence of Tris(2,2′-bipyridyl)ruthenium(II)/tertia?ryamines. Electroanalysis 20: 1085–1091.
[37]  Zu YB, Bard AJ (2001) Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2,2′)bipyridylruthenium(II)/triprop?ylaminesystem on electrode surface hydrophobicity. Anal Chem 73: 3960–3964.
[38]  Workman S, Richter MM (2000) The effects of nonionic surfactants on the tris(2,2′-bipyridyl)ruthenium(II) - Tripropylamine electrochemiluminescence system. Anal Chem 72: 5556–5561.
[39]  Factor B, Munegge B, Workman S, Bolton E, Bos J, et al. (2001) Surfactant chain length effects on the light emission of tris(2,2′-bipyridyl)ruthenium(II)/tripro?pylamineelectrogenerated chemiluminescence. Anal Chem 73: 4621–4624.
[40]  Alexander CJ, Richter MM (1999) Measurement of fatty amine ethoxylate surfactants using electrochemiluminescence. Anal Chim Acta 402: 105–112.
[41]  Bruce D, McCall J, Richter MM (2002) Effects of electron withdrawing and donating groups on the efficiency of tris(2,2′-bipyridyl)ruthenium(II)/tri-n-?propylamineelectrochemiluminescence. Analyst 127: 125–128.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133