全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Towards a Clinically Relevant Lentiviral Transduction Protocol for Primary Human CD34+ Hematopoietic Stem/Progenitor Cells

DOI: 10.1371/journal.pone.0006461

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Hematopoietic stem cells (HSC), in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multi-potency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34+ HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin. Methodology/Principal Findings Using commercially available G-CSF mobilized peripheral blood (PB) CD34+ cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, pre-stimulation time, multiplicity of infection (MOI), transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV) carrying enhanced green fluorescent protein (GFP) was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin. Conclusions/Significance This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34+ cells.

References

[1]  Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466): 627–629.
[2]  Aiuti A, Slavin S, Aker M, Ficara F, Deola S, et al. (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296(5577): 2410–2413.
[3]  Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, et al. (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12(4): 401–409.
[4]  Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45: 917–927.
[5]  Wilpshaar J, Falkenburg JH, Tong X, Noort WA, Breese R, et al. (2000) Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34(+) cells in NOD/SCID mice. Blood 96: 2100–2107.
[6]  Piacibello W, Bruno S, Sanavio F, Droetto S, Gunetti M, et al. (2002) Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Nonobese diabetic/severe combined immunodeficient. Blood 100: 4391–4400.
[7]  Champlin RE, Schmitz N, Horowitz MM, Chapuis B, Chopra R, et al. (2000) Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood 95: 3702–3709.
[8]  Glimm H, Oh IH, Eaves CJ (2000) Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 96: 4185–4193.
[9]  Barquinero J, Segovia JC, Ramirez M, Limon A, Guenechea G, et al. (2000) Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood 95: 3085–3093.
[10]  Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242.
[11]  Roe TY, Reynolds TC, Yu G, Brown P (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12: 2099–2108.
[12]  Peter SO, Kittler EL, Ramshaw HS, Quesenberry PJ (1996) Ex vivo expansion of murine marrow cells with interleukin-3(IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87: 30–37.
[13]  Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2: 308–316.
[14]  Sutto RE, Reitsma MJ, Uchida N, Brown PO (1999) Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol 73: 3649–3660.
[15]  Barrette S, Douglas JL, Seidel NE, Bodine DM (2000) Lentivirus-based vectors transduce mouse hematopoietic stem cells with similar efficiency to Moloney murine leukemia virus-based vectors. Blood 96: 3385–3391.
[16]  A Phase I Pilot Study of Safety and Feasibility of Stem Cell Therapy for AIDS Lymphoma using Stem Cells Treated with a Lentivirus Vector Encoding Multiple Anti-HIV RNAs. Trial ID: US-725. Gene Therapy Clinical Trials Worldwide, provided by the Journal of Gene Medicine.
[17]  Treatment of X linked cerebral adrenoleukodystrophy by ex vivo transfer of the ALD gene in autologous CD34+ cells. Trial ID: FR-028. Gene Therapy Clinical Trials Worldwide, provided by the Journal of Gene Medicine.
[18]  Dando JS, Aiuti A, Deola S, Ficara F, Bordignon C (2001) Optimisation of retroviral supernatant production conditions for the genetic modification of human CD34+ cells. J Gene Med 3: 219–227.
[19]  Tuschong L, Soenen SL, Blaese RM, Candotti F, Muul LM (2002) Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Hum Gene Ther 13: 1605–1610.
[20]  Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, et al. (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9: 747–756.
[21]  Even MS, Sandusky CB, Barnard ND (2006) Serum-free hybridoma culture: ethical, scientific and safety considerations. Trends Biotechnol 24: 105–108.
[22]  Cui Y, Golob J, Kelleher E, Ye Z, Pardoll D, et al. (2002) Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 99: 399–408.
[23]  Mazurier F, Gan OI, Mckenzie JL, Doedens M, Dick JE (2004) Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103: 545–552.
[24]  Charrier S, Dupre L, Scaramuzza S, Jeanson-Leh L, Blundell MP, et al. (2007) Lentiviral vectors targeting WASp expression to hematopoietic cells, efficiently transduce and correct cells from WAS patients. Gene Ther 14: 415–428.
[25]  Di Nunzio F, Piovani B, Cosset FL, Mavilio F, Stornaiuolo A (2007) Transduction of human hematopoietic stem cells by lentiviral vectors pseudotyped with the RD114-TR chimeric envelope glycoprotein. Hum Gene Ther 18: 811–820.
[26]  Li X, Zhao X, Fang Y, Jiang X, Duong T, et al. (1998) Generation of destabilized enhanced green fluorescent protein as a transcription reporter. J Biol Chem 273: 34970–34975.
[27]  Bokman SH, Ward WW (1981) Renaturation of Aequorea green-fluorescent protein. Biochem Biophys Res Comm 101: 1372–1380.
[28]  Ward WW (1981) Properties of the Coelenterate green-fluorescent proteins. In: DeLuca M, McElroy WD, editors. Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical applications. NY: Academic Press, Inc. pp. 235–242.
[29]  Rosenthal N (1987) Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol 152: 704–709.
[30]  Robart FD, Ward WW (1990) Solvent perturbations of Aequorea green fluorescent protein. Photochem Photobiol 51: 92s.
[31]  Tiscornia G Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1: 241–245.
[32]  Armstrong L, Stojkovic M, Dimmick I, Ahmad S, Stojkovic P, et al. (2004) Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 22: 1142–1151.
[33]  Storms RW, Green PD, Safford KM, Niedzwiecki D, Cogle CR, et al. (2005) Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood 106: 95–102.
[34]  Christ O, Lucke K, Imren S, Leung K, Hamilton M, et al. (2007) Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica 92: 1165–1172.
[35]  Donaldson C, Denning-Kendall P, Bradley B, Hows J (2001) The CD34(+)CD38(neg) population is significantly increased in haemopoietic cell expansion cultures in serum-free compared to serum-replete conditions: dissociation of phenotype and function. Bone Marrow Transplant 27: 365–371.
[36]  Prus E, Chandraratna RA, Fibach E (2004) Retinoic acid receptor antagonist inhibits CD38 antigen expression on human hematopoietic cells in vitro. Leuk Lymphoma 45: 1025–1035.
[37]  Baum C, Düllmann J, Li Z, Fehse B, Meyer J, et al. (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101: 2099–2114.
[38]  McCormack MP, Rabbitts TH (2004) Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 350: 913–922.
[39]  Pike-Overzet K, van der Burg M, Wagemaker G, van Dogen JJ, Staal F (2007) New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. J Mol Ther 15: 1910–1916.
[40]  Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, et al. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521–529.
[41]  Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300: 1749–1751.
[42]  Modlich U, Baum C (2009) Preventing and exploiting the oncogenic potential of integrating gene vectors. J Clin Invest 119: 755–758.
[43]  Bokhoven M, Stephen SL, Knight S, Gevers EF, Robinson IC, et al. (2009) Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol 83: 283–294.
[44]  Dunbar CE (2005) Stem cell gene transfer: insights into integration and hematopoiesis from primate genetic marking studies. Ann N Y Acad Sci 1044: 178–182.
[45]  Mikkers H, Berns A (2003) Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 88: 53–99.
[46]  De Palma M, Montini E, Santoni de Sio FR, Benedicenti F, Gentile A, et al. (2005) Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 105: 2307–2315.
[47]  Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, et al. (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119: 964–975.
[48]  Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72: 9873–9880.
[49]  Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72: 8463–8471.
[50]  Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72: 811–816.
[51]  Williams SF, Lee WJ, Bender JG, Zimmerman T, Swinney P, et al. (1996) Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood 87: 1687–1691.
[52]  Pawelec G, Muller R, Rehbein A, Hahnel K, Ziegler BL (1998) Extrathymic T cell differentiation in vitro from human CD34+ stem cells. J Leukoc Biol 64: 733–739.
[53]  Wu MH, Smith SL, Dolan ME (2001) High Efficiency Electroporation of Human Umbilical Cord Blood CD34+ Hematopoietic Precursor Cells. Stem Cells 19: 492–499.
[54]  Cohen-Haguenauer O, Peault B, Bauche C, Daniel MT, Casal I, et al. (2006) In vivo repopulation ability of genetically corrected bone marrow cells from Fanconi anemia patients. Proc Natl Acad Sci U S A 103: 2340–2345.
[55]  Gammaitoni L, Bruno S, Sanavio F, Gunetti M, Kollet O, et al. (2003) Ex vivo expansion of human adult stem cells capable of primary and secondary hemopoietic reconstitution. Exp Hematol 31: 261–270.
[56]  Ailles L, Schmidt M, Santoni de Sio FR, Glimm H, Cavalieri S, et al. (2002) Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Mol Ther 6: 615–626.
[57]  Santoni de Sio FR, Cascio P, Zingale A, Gasparini M, Naldini L (2006) Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood 107: 4257–4265.
[58]  Kustikova OS, Wahlers A, Kuhlcke K, Stahle B, Zander AR, et al. (2003) Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 102: 3934–3937.
[59]  Li Z, Schwieger M, Lange C, Kraunus J, Sun H, et al. (2003) Predictable and efficient retroviral gene transfer into murine bone marrow repopulating cells using a defined vector dose. Exp Hematol 31: 1206–1214.
[60]  Lee CI, Kohn DB, Ekert JE, Tarantal AF (2004) Morphological analysis and lentiviral transduction of fetal monkey bone marrow-derived mesenchymal stem cells. Mol Ther 9: 112–123.
[61]  Nayak SK, McCallister T, Han LJ, Gangavalli R, Barber J, et al. (1996) Transduction of human renal carcinoma cells with human gamma-interferon gene via retroviral vector. Cancer Gene Ther 3: 143–150.
[62]  Tesio M, Gammaitoni L, Gunetti M, Leuci V, Pignochino Y, et al. (2008) Sustained long-term engraftment and transgene expression of peripheral blood CD34+ cells transduced with third-generation lentiviral vectors. Stem Cells 26: 1620–1627.
[63]  Mostoslavsky G, Kotton DN, Fabian AJ, Gray JT, Lee JS, et al. (2005) Efficiency of transduction of highly purified murine hematopoietic stem cells by lentiviral and oncoretroviral vectors under conditions of minimal in vitro manipulation. Mol Ther 11: 932–940.
[64]  Kurre P, Anandakumar P, Kiem HP (2006) Rapid 1-hour transduction of whole bone marrow leads to long-term repopulation of murine recipients with lentivirus-modified hematopoietic stem cells. Gene Ther 13: 369–373.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133