全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Deciphering Proteomic Signatures of Early Diapause in Nasonia

DOI: 10.1371/journal.pone.0006394

Full-Text   Cite this paper   Add to My Lib

Abstract:

Insect diapause is an alternative life-history strategy used to increase longevity and survival in harsh environmental conditions. Even though some aspects of diapause are well investigated, broader scale studies that elucidate the global metabolic adjustments required for this remarkable trait, are rare. In order to better understand the metabolic changes during early insect diapause, we used a shotgun proteomics approach on early diapausing and non-diapausing larvae of the recently sequenced hymenopteran model organism Nasonia vitripennis. Our results deliver insights into the molecular underpinnings of diapause in Nasonia and corroborate previously reported diapause-associated features for invertebrates, such as a diapause-dependent abundance change for heat shock and storage proteins. Furthermore, we observed a diapause-dependent switch in enzymes involved in glycerol synthesis and a vastly changed capacity for protein synthesis and degradation. The abundance of structural proteins and proteins involved in protein synthesis decreased with increasing diapause duration, while the abundance of proteins likely involved in diapause maintenance (e.g. ferritins) increased. Only few potentially diapause-specific proteins were identified suggesting that diapause in Nasonia relies to a large extent on a modulation of pre-existing pathways. Studying a diapause syndrome on a proteomic level rather than isolated pathways or physiological networks, has proven to be an efficient and successful avenue to understand molecular mechanisms involved in diapause.

References

[1]  Harvey WR (1962) Metabolic aspects of insect diapause. Annual Review of Entomology 7: 57–&.
[2]  Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press. 411 p.
[3]  Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47: 93–122.
[4]  Fielenbach N, Antebi A (2008) C. Elegans dauer formation and the molecular basis of plasticity. Genes Dev 22: 2149–2165.
[5]  Tatar M, Yin C (2001) Slow aging during insect reproductive diapause: Why butterflies, grasshoppers and flies are like worms. Exp Gerontol 36: 723–738.
[6]  Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J Insect Physiol 53: 760–773.
[7]  Sim C, Denlinger DL (2008) Insulin signaling and foxo regulate the overwintering diapause of the mosquito culex pipiens. Proc Natl Acad Sci U S A 105: 6777–6781.
[8]  Williams KD, Busto M, Suster ML, So AK, Ben-Shahar Y, et al. (2006) Natural variation in drosophila melanogaster diapause due to the insulin-regulated pi3-kinase. Proc Natl Acad Sci U S A 103: 15911–15915.
[9]  Flatt T, Tu MP, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of drosophila development and life history. Bioessays 27: 999–1010.
[10]  Hunt JH, Kensinger BJ, Kossuth JA, Henshaw MT, Norberg K, et al. (2007) A diapause pathway underlies the gyne phenotype in polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc Natl Acad Sci U S A 104: 14020–14025.
[11]  Zhou Q, Wu C, Dong B, Liu F, Xiang J (2008) The encysted dormant embryo proteome of artemia sinica. Mar Biotechnol (NY) 10: 438–446.
[12]  Wang W, Meng B, Chen W, Ge X, Liu S, et al. (2007) A proteomic study on postdiapaused embryonic development of brine shrimp (artemia franciscana). Proteomics 7: 3580–3591.
[13]  Li AQ, Popova-Butler A, Dean DH, Denlinger DL (2007) Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. J Insect Physiol 53: 385–391.
[14]  Michaud MR, Denlinger DL (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (sarcophaga crassipalpis): A metabolomic comparison. J Comp Physiol [B] 177: 753–763.
[15]  vitripennis genome sequence.
[16]  Abdel-Latief M, Garbe LA, Koch M, Ruther J (2008) An epoxide hydrolase involved in the biosynthesis of an insect sex attractant and its use to localize the production site. Proc Natl Acad Sci U S A 105: 8914–8919.
[17]  Saunders DS, Sutton D, Jarvis RA (1970) The effect of host species on diapause induction in nasonia vitripennis. J Insect Physiol 16: 405–416.
[18]  Saunders DS (1967) Time measurement in insect photoperiodism: Reversal of a photoperiod effect by chilling. Science 156: 1126–1127.
[19]  Schneiderman HA, Horwitz J (1958) The induction and termination of facultative diapause in the chalcid wasps mormoniella-vitripennis (walker) and tritneptis-klugii (ratzeburg). Journal of Experimental Biology 35: 520–551.
[20]  Deloof A, Vanloon J, Vanderroost C (1979) Influence of ecdysterone, precocene and compounds with juvenile-hormone activity on induction, termination and maintenance of diapause in the parasitoid wasp, nasonia-vitripennis. Physiological Entomology 4: 319–328.
[21]  Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138: 141–143.
[22]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
[23]  Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and lc/ms sample pretreatment in proteomics. Anal Chem 75: 663–670.
[24]  Wolschin F, Amdam G (2007) Plasticity and robustness of protein patterns during reversible development in the honey bee (apis mellifera). Anal Bioanal Chem 389: 1095–1100.
[25]  Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, et al. (2004) Open mass spectrometry search algorithm. J Proteome Res 3: 958–964.
[26]  .
[27]  Saito A, Koga K, Sakaguchi B (1982) Changes in polysome content during development after diapause of bombyx-mori embryos. Febs Letters 150: 449–453.
[28]  Kaygun H, Marzluff WF (2005) Translation termination is involved in histone mrna degradation when DNA replication is inhibited. Molecular and Cellular Biology 25: 6879–6888.
[29]  Kim M, Robich RM, Rinehart JP, Denlinger DL (2006) Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, culex pipiens. J Insect Physiol 52: 1226–1233.
[30]  Chen B, Kayukawa T, Jiang H, Monteiro A, Hoshizaki S, et al. (2005) Datrypsin, a novel clip-domain serine proteinase gene up-regulated during winter and summer diapauses of the onion maggot, delia antiqua. Gene 347: 115–123.
[31]  Lee KY, Valaitis AP, Denlinger DL (1998) Activity of gut alkaline phosphatase, proteases and esterase in relation to diapause of pharate first instar larvae of the gypsy moth, lymantria dispar. Archives of Insect Biochemistry and Physiology 37: 197–205.
[32]  Seshachalam RV, Subramanyam MVV, Krishnamoorthy RV (1992) New pathway of utilization of ammonia nitrogen for the synthesis of amino-acids through nadh dependent transaminases in bombyx-mori l. Physiological Entomology 17: 281–287.
[33]  Bork P, Koonin EV (1994) A new family of carbon-nitrogen hydrolases. Protein Sci 3: 1344–1346.
[34]  Chino H (1957) Conversion of glycogen to sorbitol and glycerol in the diapause egg of the bombyx silkworm. Nature 180: 606–607.
[35]  Chino H (1958) Carbohydrate metabolism in the diapause egg of the silkworm, bombyx-mori 2. Conversion of glycogen into sorbitol and glycerol during diapause. Journal of Insect Physiology 2: 1–&.
[36]  Kostal V, Tollarova M, Sula J (2004) Adjustments of the enzymatic complement for polyol biosynthesis and accumulation in diapausing cold-acclimated adults of pyrrhocoris apterus. J Insect Physiol 50: 303–313.
[37]  Storey KB (1997) Organic solutes in freezing tolerance. Comparative Biochemistry and Physiology a-Physiology 117: 319–326.
[38]  Nelson RA (1980) Protein and fat metabolism in hibernating bears. Fed Proc 39: 2955–2958.
[39]  Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in saccharomyces cerevisiae: New functions for old mechanisms. FEMS Microbiol Rev 31: 327–341.
[40]  Ishiguro S, Li Y, Nakano K, Tsumuki H, Goto M (2007) Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer, chilo suppressalis, exposed to the environment in the shonai district, japan. J Insect Physiol 53: 392–397.
[41]  Rivers DB, Lee RE, Denlinger DL (2000) Cold hardiness of the fly pupal parasitoid nasonia vitripennis is enhanced by its host sarcophaga crassipalpis. Journal of Insect Physiology 46: 99–106.
[42]  Koorts AM, Viljoen M (2007) Ferritin and ferritin isoforms ii: Protection against uncontrolled cellular proliferation, oxidative damage and inflammatory processes. Arch Physiol Biochem 113: 55–64.
[43]  Tarrant AM, Baumgartner MF, Verslycke T, Johnson CL (2008) Differential gene expression in diapausing and active calanus finmarchicus (copepoda). Marine Ecology-Progress Series 355: 193–207.
[44]  Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in artemia embryos during encystment and diapause. Febs J 274: 1093–1101.
[45]  Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SA, et al. (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci U S A 104: 11130–11137.
[46]  Hayward SA, Pavlides SC, Tammariello SP, Rinehart JP, Denlinger DL (2005) Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence. J Insect Physiol 51: 631–640.
[47]  Soula B, Menu F (2005) Extended life cycle in the chestnut weevil: Prolonged or repeated diapause? Entomologia Experimentalis Et Applicata 115: 333–340.
[48]  Miura K, Shinoda T, Yura M, Nomura S, Kamiya K, et al. (1998) Two hexameric cyanoprotein subunits from an insect, riptortus clavatus. Sequence, phylogeny and developmental and juvenile hormone regulation. Eur J Biochem 258: 929–940.
[49]  Tungjitwitayakul J, Singtripop T, Nettagul A, Oda Y, Tatun N, et al. (2008) Identification, characterization, and developmental regulation of two storage proteins in the bamboo borer omphisa fuscidentalis. J Insect Physiol 54: 62–76.
[50]  Sonoda S, Fukumoto K, Izumi Y, Ashfaq M, Yoshida H, et al. (2006) Methionine-rich storage protein gene in the rice stem borer, chilo suppressalis, is expressed during diapause in response to cold acclimation. Insect Mol Biol 15: 853–859.
[51]  Godlewski J, Kludkiewicz B, Grzelak K, Cymborowski B (2001) Expression of larval hemolymph proteins (lhp) genes and protein synthesis in the fat body of greater wax moth (galleria mellonella) larvae during diapause. J Insect Physiol 47: 759–766.
[52]  Lewis DK, Spurgeon D, Sappington TW, Keeley LL (2002) A hexamerin protein, agsp-1, is associated with diapause in the boll weevil. Journal of Insect Physiology 48: 887–901.
[53]  Spyliotopoulos A, Gkouvitsas T, Fantinou A, Kourti A (2007) Expression of a cdna encoding a member of the hexamerin storage proteins from the moth sesamia nonagrioides (lef.) during diapause. Comp Biochem Physiol B Biochem Mol Biol 148: 44–54.
[54]  Dillwith JW, Lenz CJ, Chippendale GM (1986) Isolation and characterization of lipophorin from the hemolymph of diapausing larvae of the southwestern corn-borer, diatraea-grandiosella. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 156: 783–789.
[55]  Turunen S, Chippendale GM (1981) Relationship of lipoproteins present in the larval hemolymph of the southwestern corn-borer, diatraea-grandiosella, to feeding and diapause. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 70: 759–765.
[56]  Tawfik AI, Kellner R, Hoffmann KH, Lorenz MW (2006) Purification, characterisation and titre of the haemolymph juvenile hormone binding proteins from schistocerca gregaria and gryllus bimaculatus. J Insect Physiol 52: 255–268.
[57]  Braun RP, Wyatt GR (1996) Sequence of the hexameric juvenile hormone-binding protein from the hemolymph of locusta migratoria. J Biol Chem 271: 31756–31762.
[58]  Yin CM, Chippendale GM (1976) Horomonal control of larval diapause and metamorphosis of the southwestern corn borer diatraea grandiosella. J Exp Biol 64: 303–310.
[59]  Singtripop T, Oda Y, Wanichacheewa S, Sakurai S (2002) Sensitivities to juvenile hormone and ecdysteroid in the diapause larvae of omphisa fuscidentalis based on the hemolymph trehalose dynamics index. J Insect Physiol 48: 817–824.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133