全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Sex Determination in the Squalius alburnoides Complex: An Initial Characterization of Sex Cascade Elements in the Context of a Hybrid Polyploid Genome

DOI: 10.1371/journal.pone.0006401

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Sex determination processes vary widely among different vertebrate taxa, but no group offers as much diversity for the study of the evolution of sex determination as teleost fish. However, the knowledge about sex determination gene cascades is scarce in this species-rich group and further difficulties arise when considering hybrid fish taxa, in which mechanisms exhibited by parental species are often disrupted. Even though hybridisation is frequent among teleosts, gene based approaches on sex determination have seldom been conducted in hybrid fish. The hybrid polyploid complex of Squalius alburnoides was used as a model to address this question. Methodology/Principal Findings We have initiated the isolation and characterization of regulatory elements (dmrt1, wt1, dax1 and figla) potentially involved in sex determination in S. alburnoides and in the parental species S. pyrenaicus and analysed their expression patterns by in situ hybridisation. In adults, an overall conservation in the cellular localization of the gene transcripts was observed between the hybrids and parental species. Some novel features emerged, such as dmrt1 expression in adult ovaries, and the non-dimorphic expression of figla, an ovarian marker in other species, in gonads of both sexes in S. alburnoides and S. pyrenaicus. The potential contribution of each gene to the sex determination process was assessed based on the timing and location of expression. Dmrt1 and wt1 transcripts were found at early stages of male development in S. alburnoides and are most likely implicated in the process of gonad development. Conclusions/Significance For the first time in the study of this hybrid complex, it was possible to directly compare the gene expression patterns between the bisexual parental species and the various hybrid forms, for an extended set of genes. The contribution of these genes to gonad integrity maintenance and functionality is apparently unaltered in the hybrids, suggesting that no abrupt shifts in gene expression occurred as a result of hybridisation.

References

[1]  Manolakou P, Lavranos G, Angelopoulou R (2006) Molecular patterns of sex determination in the animal kingdom: a comparative study of the biology of reproduction. Reprod Biol Endocrinol 4: 59.
[2]  Baroiller JF (1999) Endocrine and environmental aspects of sex differentiation in fish. Cellular and Molecular Life Sciences 55: 910–931.
[3]  Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208: 191–364.
[4]  Schartl M (2004) A comparative view on sex determination in medaka. Mech Dev 121: 639–645.
[5]  Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34: 401–437.
[6]  Ohno S (1970) Evolution by Gene Duplication. George Allen and Unwin, London.
[7]  Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications - the adventure of a hypothesis. Trends Genet 21: 559–567.
[8]  Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3: e314.
[9]  Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94: 280–294.
[10]  Volff JN, Schartl M (2001) Variability of genetic sex determination in poeciliid fishes. Genetica 111: 101–110.
[11]  Woolcock B, Kazianis S, Lucito R, Walter RB, Kallman KD, et al. (2006) Allele specific marker generation and linkage mapping on the Xiphophorus sex chromosomes. Zebrafish 3: 23–37.
[12]  Alves MJ, Coelho MM, Collares-Pereira MJ (2001) Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111: 375–385.
[13]  Collares-Pereira MJ, Próspero MI, Biléu RI, Rodrigues EM (1998) Leuciscus (Pisces, Cyprinidae) karyotypes: transect of Portuguese populations. Gen Mol Biol 21: 63–69.
[14]  Alves MJ, Coelho MM, Collares-Pereira MJ (1998) Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae): a way to avoid the genetic constraints of uniparentalism. Mol Biol Evol 15: 1233–1242.
[15]  Pala I, Klüver N, Thorsteinsdottir S, Schartl M, Coelho MM (2008a) Expression pattern of anti-Müllerian hormone (amh) in the hybrid fish complex of Squalius alburnoides. Gene 410: 249–258.
[16]  Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH (1999a) Conservation of a sex-determining gene. Nature 402: 601–602.
[17]  Zarkower D (2001) Establishing sexual dimorphism: conservation amidst diversity? Nat Rev Genet 2: 75–85.
[18]  Schartl M (2004) A comparative view on sex determination in medaka. Mech Dev 121: 639–645.
[19]  Erdman SE, Burtis KC (1993) The Drosophila doublesex proteins share a novel zinc finger related DNA binding domain. EMBO J 12: 527–535.
[20]  Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, et al. (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391: 691–695.
[21]  Ferguson-Smith M (2007) The evolution of sex chromosomes and sex determination in vertebrates and the key role of DMRT1. Sex Dev 1: 2–11.
[22]  Veitia RA, Salas-Cortés L, Ottolenghi C, Pailhoux E, Cotinot C, et al. (2001) Testis determination in mammals: more questions than answers. Mol Cell Endocrinol 179: 3–16.
[23]  Nanda I, Shan Z, Schartl M, Burt DW, Koehler M, et al. (1999) 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat Genet 21: 258–259.
[24]  Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D (1999) Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215: 208–220.
[25]  Shan Z, Nanda I, Wang Y, Schmid M, Vortkamp A, et al. (2000) Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds, Cytogenet. Cell Genet 89: 252–257.
[26]  Guan G, Kobayashi T, Nagahama Y (2000) Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the Tilapia (Oreochromis niloticus). Biochem Biophys Res Commun 272: 662–666.
[27]  Marchand O, Govoroun M, D'Cotta H, McMeel O, Lareyre J, et al. (2000) DMRT1 expression during gonadal differentiation and spermatogenesis in therainbow trout, Oncorhynchus mykiss. Biochim Biophys Acta 1493: 180–187.
[28]  Guo Y, Cheng H, Huang X, Gao S, Yu H, et al. (2005) Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1. Biochemical and Biophysical Research Communications 330: 950–957.
[29]  Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, et al. (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proceedings of the National Academy of Science USA 99: 11778–11783.
[30]  Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, et al. (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417: 559–563.
[31]  Kent J, Coriat AM, Sharpe PT, Hastie ND, van Heyningen V (1995) The evolution of WT1 sequence and expression pattern in the vertebrates. Oncogene 11: 1781–1792.
[32]  Niksic M, Slight J, Sanford JR, Caceres JF, Hastie ND (2004) The Wilms' tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum Mol Genet 13: 463–471.
[33]  Bor YC, Swartz J, Morrison A, Rekosh D, Ladomery M, et al. (2006) The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev 20: 1597–1608.
[34]  Klüver N, Herpin A, Braasch I, Drieβle J, Schartl M (2009) Regulatory back-up circuit of medaka Wt1 co-orthologs ensures PGC maintenance. Dev Biol 325: 179–188.
[35]  Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB (1993) The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40: 85–97.
[36]  Smith CA, Smith MJ, Sinclair AH (1999b) Gene expression during gonadogenesis in the chicken embryo. Gene 234: 395–402.
[37]  Western PS, Harry JL, Marshall Graves JA, Sinclair AH (2000) Temperature-dependent sex determination in the American alligator: expression of SF1, WT1 and DAX1 during gonadogenesis. Gene 241: 223–232.
[38]  Semba K, Saito-Ueno R, Takayama G, Kondo M (1996) cDNA cloning and its pronephros-specific expression of the Wilms' tumour suppressor gene, WT1, from Xenopus laevis. Gene 175: 165–172.
[39]  Fedorova S, Miyamoto R, Harada T, Isogai S, Hashimoto H, et al. (2008) Renal glomerulogenesis in medaka fish, Oryzias latipes. Dev Dyn 237: 2342–2352.
[40]  Bollig F, Mehringer R, Perner B, Hartung C, Sch?fer M, et al. (2006) Identification and comparative expression analysis of a second wt1 gene in zebrafish. Dev Dyn 235: 554–561.
[41]  Nakatsuru Y, Minami K, Yoshikawa A, Zhu J, Oda H, et al. (2000) Eel WT1 sequence and expression in spontaneous nephroblastomas in Japanese eel. Gene 245: 245–251.
[42]  Brunelli JP, Robison BD, Thorgaard GH (2001) Ancient and recent duplications of the rainbow trout Wilms' tumor gene. Genome 44: 455–462.
[43]  Kim J, Prawitt D, Bardeesy N, Torban E, Vicaner C, et al. (1999) The Wilms' tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation. Mol Cell Biol 19: 2289–2299.
[44]  Wilhelm D, Englert C (2002) The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev 16: 1839–1851.
[45]  Iyer AK, McCabe ER (2004) Molecular mechanisms of DAX1 action. Mol Genet Metab 83: 60–73.
[46]  Wang ZJ, Jeffs B, Ito M, Achermann JC, Yu RN, et al. (2001) Aromatase (Cyp19) expression is up-regulated by targeted disruption of Dax1. Proc Natl Acad Sci USA 98: 7988–7993.
[47]  Tremblay JJ, Viger RS (2001) Nuclear receptor Dax-1 represses the transcriptional cooperation between GATA-4 and SF-1 in Sertoli cells. Biol Reprod 64: 1191–1199.
[48]  Zhang H, Thomsen JS, Johansson L, Gustafsson JA, Treuter E (2000) DAX- 1 functions as an LXXLL-containing corepressor for activated estrogen receptors. J Biol Chem 275: 39855–39859.
[49]  Holter E, Kotaja N, Makela S, Strauss L, Kietz S, et al. (2002) Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX- 1. Mol Endocrinol 16: 515–528.
[50]  Clipsham R, McCabe ER (2003) DAX1 and its network partners: exploring complexity in development. Mol Genet Metab 80: 81–120.
[51]  Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, et al. (1998) Wilms' tumor 1 and DAX-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93: 445–454.
[52]  Smith CA, Clifford V, Western PS, Wilcox SA, Bell KS, et al. (2000) Cloning and expression of a DAX1 homologue in the chicken embryo. Gene 241: 223–232.
[53]  Torres Maldonado LC, Landa Piedra A, Moreno Mendoza N, Marmolejo Valencia A, Meza Martínez A, et al. (2002) Expression profiles of Dax1, Dmrt1, and Sox9 during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol 129: 20–26.
[54]  Sugita J, Takase M, Nakamura M (2001) Expression of Dax-1 during gonadal development of the frog. Gene 280: 67–74.
[55]  Zhao Y, Yang Z, Phelan JK, Wheeler DA, Lin S, McCabe ER (2006) Zebrafish dax1 is required for development of the interrenal organ, the adrenal cortex equivalent. Mol Endocrinol 20: 2630–2640.
[56]  Wang DS, Kobayashi T, Senthilkumaran B, Sakai F, Sudhakumari CC, et al. (2002) Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, Oreochromis niloticus. Biochem Biophys Res Commun 297: 632–640.
[57]  Martins RS, Deloffre LA, Mylonas CC, Power DM, Canário AV (2007) Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation. Reprod Biol Endocrinol 5: 19.
[58]  Nakamoto M, Wang DS, Suzuki A, Matsuda M, Nagahama Y, et al. (2007) Dax1 suppresses P450arom expression in medaka ovarian follicles. Mol Reprod Dev 74: 1239–1246.
[59]  Liang L, Soyal SM, Dean J (1997) FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development 124: 4939–4947.
[60]  Soyal SM, Amleh A, Dean J (2000) FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development 127: 4645–4654.
[61]  Kobayashi T, Kajiura-Kobayashi H, Guan G, Nagahama Y (2008) Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev Dyn 237: 297–306.
[62]  Raymond CS, Murphy MW, O'sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a Gene Related to Worm and Fly Sexual Regulators, Is Required for Mammalian Testis Differentiation. Genes & Development 14: 2587–2595.
[63]  Nanda I, Zend-Ajusch E, Shan Z, Grutzner F, Schartl M, et al. (2000) Conserved Synteny Between the Chicken Z Sex Chromosome and Human Chromosome 9 Includes the Male Regulatory Gene Dmrt1: a Comparative (Re)View on Avian Sex Determination. Cytogenetics and CellGenetics 89: 67–78.
[64]  Shibata K, Takase M, Nakamura M (2002) The Dmrt1 Expression in Sex- Reversed Gonads of Amphibians. General and Comparative Endocrinology 127: 232–241.
[65]  Yamaguchi A, Lee KH, Fujimoto H, Kadomura K, Yasumoto S, et al. (2006) Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comp Biochem Physiol D 1: 59–68.
[66]  Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, et al. (2004) Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231: 518–526.
[67]  Veith AM, Sch?fer M, Klüver N, Schmidt C, Schultheis C, et al. (2006) Tissue-specific expression of dmrt genes in embryos and adults of the platyfish Xiphophorus maculatus. Zebrafish 3: 325–337.
[68]  Gao F, Maiti S, Alam N, Zhang Z, Deng JM, et al. (2006) The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci U S A 103: 11987–11992.
[69]  Chun SY, McGee EA, Hsu SY, Minami S, LaPolt PS, et al. (1999) Restricted expression of WT1 messenger ribonucleic acid in immature ovarian follicles: uniformity in mammalian and avian species and maintenance during reproductive senescence. Biol Reprod 60: 365–373.
[70]  Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL (1998) Role of Ahch in gonadal development and gametogenesis. Nat Genet 20: 353–357.
[71]  Ikeda Y, Takeda Y, Shikayama T, Mukai T, Hisano S, et al. (2001) Comparative localization of Dax-1 and Ad4BP/SF-1 during development of the hypothalamic-pituitary-gonadal axis suggests their closely related and distinct functions. Dev Dyn 220: 363–376.
[72]  J?rgensen A, Morthorst JE, Andersen O, Rasmussen LJ, Bjerregaard P (2008) Expression profiles for six zebrafish genes during gonadal sex differentiation. Reprod Biol Endocrinol 6: 25.
[73]  Liarte S, Chaves-Pozo E, García-Alcazar A, Mulero V, Meseguer J, et al. (2007) Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration. Reprod Biol Endocrinol 5: 20.
[74]  Kanamori A (2000) Systematic identification of genes expressed during early oogenesis in medaka. Mol Reprod Dev 55: 31–36.
[75]  Pala I, Coelho MM, Schartl M (2008b) Dosage compensation by gene copy silencing in a triploid hybrid fish. Curr Biol 18: 1344–1348.
[76]  Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37(Database issue) D229–232.
[77]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[78]  Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195–202.
[79]  Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, et al. (2005) Protein structure prediction servers at University College London. Nucl Acids Res 33 (Web Server issue) W36–38.
[80]  Bajanca F, Luz M, Duxson MJ, Thorsteinsdóttir S (2004) Integrins in the mouse myotome: developmental changes and differences between the epaxial and hypaxial lineage. Dev Dyn 231: 402–415.
[81]  Sousa-Santos C, Collares-Pereira MJ, Almada VC (2006) May a hybridogenetic complex regenerate the nuclear genome of both sexes of a missing ancestor? First evidence on the occurrence of a nuclear non-hybrid Squalius alburnoides (Cyprinidae) female based on DNA sequencing. Journal of Natural History 40: 1443–1448.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133