全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Molecular Taxonomy of Phytopathogenic Fungi: A Case Study in Peronospora

DOI: 10.1371/journal.pone.0006319

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Inappropriate taxon definitions may have severe consequences in many areas. For instance, biologically sensible species delimitation of plant pathogens is crucial for measures such as plant protection or biological control and for comparative studies involving model organisms. However, delimiting species is challenging in the case of organisms for which often only molecular data are available, such as prokaryotes, fungi, and many unicellular eukaryotes. Even in the case of organisms with well-established morphological characteristics, molecular taxonomy is often necessary to emend current taxonomic concepts and to analyze DNA sequences directly sampled from the environment. Typically, for this purpose clustering approaches to delineate molecular operational taxonomic units have been applied using arbitrary choices regarding the distance threshold values, and the clustering algorithms. Methodology Here, we report on a clustering optimization method to establish a molecular taxonomy of Peronospora based on ITS nrDNA sequences. Peronospora is the largest genus within the downy mildews, which are obligate parasites of higher plants, and includes various economically important pathogens. The method determines the distance function and clustering setting that result in an optimal agreement with selected reference data. Optimization was based on both taxonomy-based and host-based reference information, yielding the same outcome. Resampling and permutation methods indicate that the method is robust regarding taxon sampling and errors in the reference data. Tests with newly obtained ITS sequences demonstrate the use of the re-classified dataset in molecular identification of downy mildews. Conclusions A corrected taxonomy is provided for all Peronospora ITS sequences contained in public databases. Clustering optimization appears to be broadly applicable in automated, sequence-based taxonomy. The method connects traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both traditional species concepts and genetic divergence.

References

[1]  Blaxter M, Floyd R (2003) Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol Evol 18: 268–269.
[2]  Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, et al. (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc London, Ser B 360: 1935–1943.
[3]  Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36: 203–209.
[4]  Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11: 839–850.
[5]  Helgason T, Watson IJ, Young JPW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Ecol 229: 127–132.
[6]  Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and pattern of host association over time and space in a tropical forest. Mol Ecol 11: 2669–2678.
[7]  Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiology and Molecular Biology Reviews 68: 686–691.
[8]  Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 1501–1506.
[9]  Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, et al. (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11: 1555–1564.
[10]  Wubet T, Wei? M, Kottke I, Teketay D, Oberwinkler F (2006) Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. Mycol Res 110: 1059–1069.
[11]  Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24: 189–216.
[12]  Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6(11): 805–814.
[13]  Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5(3): e77.
[14]  Belbahri L, Calmin G, Pawlowski J, Lefort F (2005) Phylogenetic analysis and real time PCR detection of a presumably undescribed Peronospora species on sweet basil and sage. Mycol Res 109: 1276–1287.
[15]  Landa BB, Montes-Borrego M, Mu?oz-Ledesma FJ, Jiménez-Díaz RM (2007) Phylogenetic analysis of downy mildew pathogens of opium poppy and PCR-based in planta and seed detection of Peronospora arborescens. Phytopathology 97: 1380–1390.
[16]  Hebert P, Gregory T (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54: 852–859.
[17]  Kress WJ, Erickson DL (2008) DNA Barcoding - a Windfall for Tropical Biology? Biotropica 40: 405–408.
[18]  Will K, Mishler B, Wheeler Q (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54: 844–851.
[19]  DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc London Ser B 360: 1905–1916.
[20]  Ferguson JWH (2002) On the use of genetic divergence for identifying species. Biol J Linn Soc 75: 509–516.
[21]  Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20: 47–55.
[22]  Schloss P, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Computational Biology 2: 786–793.
[23]  Sokal RR, Sneath PHA (1963) Principles of Numerical Taxonomy. San Francisco: Freeman WH and Company. 359 p.
[24]  Legendre P, Legendre L (1998) Numerical ecology, 2nd English edition. Amsterdam: Elsevier Science BV.
[25]  Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evolutionary Bioinformatics 4: 193–201.
[26]  Abdo Z, Golding B (2007) A step toward barcoding life: A model-based, decision-theoretic method to assign genes to preexisting species groups. Syst Biol 56: 44–56.
[27]  Nielsen R, Matz M (2006) Statistical approaches for DNA barcoding. Syst Biol 55: 162–169.
[28]  Zhang AB, Sikes DS, Muster C, Li SQ (2008) Inferring species membership using DNA sequences with back-propagation neural networks. Syst Biol 57: 202–215.
[29]  Linnen CR, Farrell BD (2008) Comparison of methods for species-tree inference in the sawfly genus Neodiprion (Hymenoptera: Diprionidae). Syst Biol 57: 876–890.
[30]  Felsenstein J (2004) Inferring Phylogenies. Sunderland: Sinauer Associates.
[31]  Dick MW (2001) Straminipilous Fungi, Systematics of the Peronosporomycetes, including accounts of the marine Straminipilous protists, the Plasmodiophorids and similar organisms. Dordrecht/Boston/London: Kluwer Academic Publishers.
[32]  Hall GS (1996) Modern approaches to species concepts in downy mildews. Plant Pathology 45: 1009–1026.
[33]  de Bary A (1863) Recherches sur le developpement de quelques champignons parasites. Annales des Sciences Naturelles, Botanique, sér 4 20: 5–148.
[34]  G?umann E (1918) über die Formen der Peronospora parasitica (P.) F. Beihefte zum Botanischen Centralblatt 35: 395–533.
[35]  G?umann E (1923) Beitr?ge zu einer Monographie der Gattung Peronospora C. Beitr?ge zur Kryptogamenflora der Schweiz 5: 1–360.
[36]  Gustavsson A (1959) Studies on Nordic Peronosporas. I. Taxonomic revision. Opera Botanica 3(1): 1–271.
[37]  Gustavsson A (1959) Studies on Nordic Peronosporas. II. General account. Opera Botanica 3(2): 1–61.
[38]  S?vulescu T (1948) Les espèces de Peronospora C de la Roumainie. Sydowia 2: 255–307.
[39]  Yerkes WD, Shaw CG (1959) Taxonomy of Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology 49: 499–507.
[40]  García-Blázquez G, G?ker M, Voglmayr H, Martín MP, Tellería MT, et al. (2008) Phylogeny of Peronospora, parasitic of Fabaceae, based on ITS sequences. Mycol Res 112: 502–512.
[41]  Voglmayr H (2003) Phylogenetic relationships of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycol Res 107: 1132–1142.
[42]  Choi Y-J, Hong S-B, Shin H-D (2003) Diversity of the Hyaloperonospora parasitica complex from core brassicaceous hosts based on ITS rDNA sequences. Mycol Res 107: 1314–1322.
[43]  G?ker M, Riethmüller A, Voglmayr H, Wei? M, Oberwinkler F (2004) Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycological Progress 3: 83–94.
[44]  G?ker M, Voglmayr H, García-Blázquez G, Oberwinkler F (2009) Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res 113: 308–325.
[45]  Voglmayr H, Constantinescu O (2007) Revision and reclassification of three Plasmopara species based on morphological and molecular phylogenetic data. Mycol Res 112: 487–501.
[46]  Voglmayr H, Fatehi J, Constantinescu O (2006) Revision of Plasmopara (Chromista, Peronosporales) parasitic on Geraniaceae. Mycol Res 110: 633–645.
[47]  Choi Y-J, Hong S-B, Shin H-D (2005) A re-consideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycol Res 109: 841–848.
[48]  G?ker M, Voglmayr H, Riethmüller A, Wei? M, Oberwinkler F (2003) Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can J Bot 81: 672–683.
[49]  G?ker M, Voglmayr H, Riethmüller A, Oberwinkler F (2007) How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genet Biol 44: 105–122.
[50]  White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand H, Sninsky JS, White TJ, editors. PCR Protocols: a guide to methods and applications. San Diego: Academic Press. pp. 315–322.
[51]  Martín MP, Winka K (2000) Alternative methods of extracting and amplifying DNA from lichens. Lichenologist 32: 189–196.
[52]  Lee C, Grasso C, Sharlow M (2002) Multiple sequence alignment using partial order graphs. Bioinformatics 18: 452–464.
[53]  Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 b10. Sunderland, MA: Sinauer Associates.
[54]  Stamatakis A (2006) RAxML-VI-HPC: Maximum-Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
[55]  Estabrook GF (1966) A mathematical model in graph theory for biological classification. J Theor Biol 12: 297–310.
[56]  Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst Biol 55: 715–728.
[57]  Rand WM (1971) Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66: 846–850.
[58]  Hubert L, Arabie P (1985) Comparing partitions. J Classif 2: 193–218.
[59]  Lanyon S (1985) Detecting internal inconsistencies in distance data. Syst Zool 34: 397–403.
[60]  Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick N, Funk V, editors. Advances in Cladistics, Volume 2. New York: Columbia University Press. pp. 7–36.
[61]  Sokal RR, Michener CDA statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 1958 38: 1409–1438.
[62]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57: 758–771.
[63]  Stamatakis A (2006) Phylogenetic models of rate heterogeneity: a high performance computing perspective. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. 278 p.
[64]  Lee MSY (2001) Unalignable sequences and molecular evolution. Trends Ecol Evol 16: 681–685.
[65]  Kemler M, G?ker M, Oberwinkler F, Begerow D (2006) Implications of molecular characters for the phylogeny of the Microbotryaceae (Basidiomycota: Urediniomycetes). BMC Evol Biol 6: 35.
[66]  Fitch WM (1971) Towards defining the course of evolution: minimal change for a specified tree topology. Syst Zool 20: 406–416.
[67]  Choi Y-J, Hong S-B, Shin H-D (2007) Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol Res 111: 381–391.
[68]  Choi Y-J, Denchev CM, Shin H-D (2008) Morphological and molecular analysis support the existence of host-specific Peronospora species infecting Chenopodium. Mycopathologia 165: 155–164.
[69]  Endo Y, Choi B-H, Ohashi H, Delgado-Salinas A (2008) Phylogenetic relationships of new world Vicia (Leguminosae) inferred from nrDNA internal transcribed spacer sequences and floral characters. Systematic Botany 33: 356–363.
[70]  Cunnington JH (2006) DNA sequence variation supports multiple host-specialised taxa in the Peronospora viciae complex (Chromista: Peronosporales). Nova Hedwigia 82: 23–29.
[71]  Fior S, Karis PO, Casazza G, Minuto L, Sala F (2006) Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matk and nuclear rDNA ITS sequences. Amer J Bot 93: 399–411.
[72]  Voglmayr H, Riethmüller A, G?ker M, Wei? M, Oberwinkler F (2004) Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildews with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data. Mycol Res 108: 1011–1024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133