全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Novel ENU-Induced Point Mutation in Scavenger Receptor Class B, Member 1, Results in Liver Specific Loss of SCARB1 Protein

DOI: 10.1371/journal.pone.0006521

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cardiovascular disease (CVD) is the largest cause of premature death in human populations throughout the world. Circulating plasma lipid levels, specifically high levels of LDL or low levels of HDL, are predictive of susceptibility to CVD. The scavenger receptor class B member 1 (SCARB1) is the primary receptor for the selective uptake of HDL cholesterol by liver and steroidogenic tissues. Hepatic SCARB1 influences plasma HDL-cholesterol levels and is vital for reverse cholesterol transport. Here we describe the mapping of a novel N-ethyl-N-nitrosourea (ENU) induced point mutation in the Scarb1 gene identified in a C57BL/6J background. The mutation is located in a highly conserved amino acid in the extracellular loop and leads to the conversion of an isoleucine to an asparagine (I179N). Homozygous mutant mice express normal Scarb1 mRNA levels and are fertile. SCARB1 protein levels are markedly reduced in liver (~90%), but not in steroidogenic tissues. This leads to ~70% increased plasma HDL levels due to reduced HDL cholesteryl ester selective uptake. Pdzk1 knockout mice have liver-specific reduction of SCARB1 protein as does this mutant; however, in vitro analysis of the mutation indicates that the regulation of SCARB1 protein in this mutant is independent of PDZK1. This new Scarb1 model may help further our understanding of post-translational and tissue-specific regulation of SCARB1 that may aid the important clinical goal of raising functional HDL.

References

[1]  Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, et al. (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271: 518–520.
[2]  Acton SL, Scherer PE, Lodish HF, Krieger M (1994) Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 269: 21003–21009.
[3]  Calvo D, Gomez-Coronado D, Lasuncion MA, Vega MA (1997) CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. Arterioscler Thromb Vasc Biol 17: 2341–2349.
[4]  Rigotti A, Acton SL, Krieger M (1995) The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem 270: 16221–16224.
[5]  Rhainds D, Brissette L (2004) The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. defining the rules for lipid traders. Int J Biochem Cell Biol 36: 39–77.
[6]  Mardones P, Quinones V, Amigo L, Moreno M, Miquel JF, et al. (2001) Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J Lipid Res 42: 170–180.
[7]  Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, et al. (1997) A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A 94: 12610–12615.
[8]  Trigatti B, Rayburn H, Vinals M, Braun A, Miettinen H, et al. (1999) Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A 96: 9322–9327.
[9]  Varban ML, Rinninger F, Wang N, Fairchild-Huntress V, Dunmore JH, et al. (1998) Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A 95: 4619–4624.
[10]  Wang DQ, Carey MC (2002) Susceptibility to murine cholesterol gallstone formation is not affected by partial disruption of the HDL receptor SR-BI. Biochim Biophys Acta 1583: 141–150.
[11]  Covey SD, Krieger M, Wang W, Penman M, Trigatti BL (2003) Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler Thromb Vasc Biol 23: 1589–1594.
[12]  Ueda Y, Royer L, Gong E, Zhang J, Cooper PN, et al. (1999) Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem 274: 7165–7171.
[13]  Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, et al. (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci U S A 76: 5818–5819.
[14]  Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A (1999) Mouse ENU mutagenesis. Hum Mol Genet 8: 1955–1963.
[15]  Balling R (2001) ENU mutagenesis: analyzing gene function in mice. Annu Rev Genomics Hum Genet 2: 463–492.
[16]  Svenson KL, Bogue MA, Peters LL (2003) Invited review: Identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains. J Appl Physiol 94: 1650–1659; discussion 1673.
[17]  Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, et al. (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99: 4465–4470.
[18]  Concepcion D, Seburn KL, Wen G, Frankel WN, Hamilton BA (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168: 953–959.
[19]  Keays DA, Clark TG, Flint J (2006) Estimating the number of coding mutations in genotypic- and phenotypic-driven N-ethyl-N-nitrosourea (ENU) screens. Mamm Genome 17: 230–238.
[20]  Quwailid MM, Hugill A, Dear N, Vizor L, Wells S, et al. (2004) A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15: 585–591.
[21]  Vinals M, Xu S, Vasile E, Krieger M (2003) Identification of the N-linked glycosylation sites on the high density lipoprotein (HDL) receptor SR-BI and assessment of their effects on HDL binding and selective lipid uptake. J Biol Chem 278: 5325–5332.
[22]  Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, et al. (2003) ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31: 3625–3630.
[23]  Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277: 5699–5702.
[24]  Yesilaltay A, Kocher O, Rigotti A, Krieger M (2005) Regulation of SR-BI-mediated high-density lipoprotein metabolism by the tissue-specific adaptor protein PDZK1. Curr Opin Lipidol 16: 147–152.
[25]  Gu X, Kozarsky K, Krieger M (2000) Scavenger receptor class B, type I-mediated [3H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor. J Biol Chem 275: 29993–30001.
[26]  Gu X, Lawrence R, Krieger M (2000) Dissociation of the high density lipoprotein and low density lipoprotein binding activities of murine scavenger receptor class B type I (mSR-BI) using retrovirus library-based activity dissection. J Biol Chem 275: 9120–9130.
[27]  Kocher O, Yesilaltay A, Cirovic C, Pal R, Rigotti A, et al. (2003) Targeted disruption of the PDZK1 gene in mice causes tissue-specific depletion of the high density lipoprotein receptor scavenger receptor class B type I and altered lipoprotein metabolism. J Biol Chem 278: 52820–52825.
[28]  Fenske SA, Yesilaltay A, Pal R, Daniels K, Rigotti A, et al. (2008) Overexpression of the PDZ1 domain of PDZK1 blocks the activity of hepatic scavenger receptor, class B, type I by altering its abundance and cellular localization. J Biol Chem 283: 22097–22104.
[29]  Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, et al. (2008) A specificity map for the PDZ domain family. PLoS Biol 6: e239.
[30]  Ikemoto M, Arai H, Feng D, Tanaka K, Aoki J, et al. (2000) Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proc Natl Acad Sci U S A 97: 6538–6543.
[31]  Silver DL (2002) A carboxyl-terminal PDZ-interacting domain of scavenger receptor B, type I is essential for cell surface expression in liver. J Biol Chem 277: 34042–34047.
[32]  Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, et al. (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84: 757–767.
[33]  Brenman JE, Christopherson KS, Craven SE, McGee AW, Bredt DS (1996) Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J Neurosci 16: 7407–7415.
[34]  Chevesich J, Kreuz AJ, Montell C (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18: 95–105.
[35]  Penkert RR, DiVittorio HM, Prehoda KE (2004) Internal recognition through PDZ domain plasticity in the Par-6-Pals1 complex. Nat Struct Mol Biol 11: 1122–1127.
[36]  Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284: 812–815.
[37]  Gee SH, Sekely SA, Lombardo C, Kurakin A, Froehner SC, et al. (1998) Cyclic peptides as non-carboxyl-terminal ligands of syntrophin PDZ domains. J Biol Chem 273: 21980–21987.
[38]  Rollins J, Chen Y, Paigen B, Wang X (2006) In search of new targets for plasma high-density lipoprotein cholesterol levels: promise of human-mouse comparative genomics. Trends Cardiovasc Med 16: 220–234.
[39]  Ishimori N, Li R, Kelmenson PM, Korstanje R, Walsh KA, et al. (2004) Quantitative trait loci analysis for plasma HDL-cholesterol concentrations and atherosclerosis susceptibility between inbred mouse strains C57BL/6J and 129S1/SvImJ. Arterioscler Thromb Vasc Biol 24: 161–166.
[40]  Su Z, Wang X, Tsaih SW, Zhang A, Cox A, et al. (2008) Identifying the genetic basis of HDL variation between 129/SvImJ and C57BL/6J mice: critical importance for testing HDL candidate genes in targeted mutant mice. J Lipid Res.
[41]  Rigotti A, Miettinen HE, Krieger M (2003) The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev 24: 357–387.
[42]  Huszar D, Varban ML, Rinninger F, Feeley R, Arai T, et al. (2000) Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler Thromb Vasc Biol 20: 1068–1073.
[43]  Huby T, Doucet C, Dachet C, Ouzilleau B, Ueda Y, et al. (2006) Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues. J Clin Invest 116: 2767–2776.
[44]  Lan D, Silver DL (2005) Fenofibrate induces a novel degradation pathway for scavenger receptor B-I independent of PDZK1. J Biol Chem 280: 23390–23396.
[45]  Sugiura T, Kato Y, Wakayama T, Silver DL, Kubo Y, et al. (2008) PDZK1 regulates two intestinal solute carriers (Slc15a1 and Slc22a5) in mice. Drug Metab Dispos 36: 1181–1188.
[46]  Lahjouji K, Elimrani I, Wu J, Mitchell GA, Qureshi IA (2002) A heterozygote phenotype is present in the jvs +/- mutant mouse livers. Mol Genet Metab 76: 76–80.
[47]  Nishina PM, Lowe S, Verstuyft J, Naggert JK, Kuypers FA, et al. (1993) Effects of dietary fats from animal and plant sources on diet-induced fatty streak lesions in C57BL/6J mice. J Lipid Res 34: 1413–1422.
[48]  Colinayo VV, Qiao JH, Wang X, Krass KL, Schadt E, et al. (2003) Genetic loci for diet-induced atherosclerotic lesions and plasma lipids in mice. Mamm Genome 14: 464–471.
[49]  Su Z, Ishimori N, Chen Y, Leiter EH, Churchill GA, et al. (2009) Four additional mouse crosses improve the lipid QTL landscape and identify Lipg as a QTL gene. J Lipid Res.
[50]  Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D, et al. (1996) A comprehensive genetic map of the mouse genome. Nature 380: 149–152.
[51]  Stylianou IM, Clinton M, Keightley PD, Pritchard C, Tymowska-Lalanne Z, et al. (2005) Microarray gene expression analysis of the Fob3b obesity QTL identifies positional candidate gene Sqle and perturbed cholesterol and glycolysis pathways. Physiol Genomics 20: 224–232.
[52]  Tietge UJ, Maugeais C, Cain W, Grass D, Glick JM, et al. (2000) Overexpression of secretory phospholipase A(2) causes rapid catabolism and altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein A-I. J Biol Chem 275: 10077–10084.
[53]  Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133