[1] | Buchthal F, Kaiser E (1951) The rheology of the cross striated muscle fiber, with particular reference to isotonic conditions. Dan Biol Medd 21: 1–318.
|
[2] | Bagni MA, Cecchi G, Colombini B, Colomo F (1999) Mechanical properties of frog muscle fibres at rest and during twitch contraction. J Electromyogr Kinesiol 9: 77–86.
|
[3] | Bagni MA, Cecchi G, Colomo F, Garzella P (1992) Are weakly binding bridges present in resting intact muscle fibers?. Biophys J 63: 1412–5.
|
[4] | Bagni MA, Cecchi G, Colomo F, Garzella P (1995) Absence of mechanical evidence for attached weakly binding cross-bridges in frog relaxed muscle fibres. J Physiol 482: 391–400.
|
[5] | Mutungi G, Ranatunga KW (1996) The visco-elasticity of resting intact mammalian (rat) fast muscle fibres. J Muscle Res Cell Motil 17: 357–364.
|
[6] | Mutungi G, Ranatunga KW (1996) The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres. J Physiol 496: 827–836.
|
[7] | Mutungi G, Ranatunga KW (1996) Tension relaxation after stretch in resting mammalian muscle fibers: stretch activation at physiological temperatures. Biophys J 70: 1432–1438.
|
[8] | Mutungi G, Ranatunga KW (1998) Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres. J Physiol 508: 253–265.
|
[9] | Ranatunga KW (2001) Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest. J Muscle Res Cell Motil 22: 399–414.
|
[10] | Fung YCB (1971) Stress-strain-history relations of soft tissues in simple elongation. In: Fung YCB, Perrone N, Anliker M, editors. Biomechanics: its foundations and objectives. Englewood Cliffs, NJ: Prentice-Hall. pp. 181–208.
|
[11] | Pinto JG, Fung JCB (1973) Mechanical properties of the heart muscle in the passive state. J Biomech 6: 596–616.
|
[12] | Woo SLY, Simon BR, Kuei SC, Akeson WH (1980) Quasilinear viscoelastic properties of normal articular-cartilage. J Biomech Eng - T ASME 102: 85–90.
|
[13] | Woo SLY, Gomez MA, Akeson WH (1981) The time and history-dependent viscoelastic properties of the canine medial collateral ligament. J Biomech Eng - T ASME 103: 293–298.
|
[14] | Woo SLY (1982) Mechanical-properties of tendons and ligaments.1. Quasi-static and non-linear viscoelastic properties. Biorheol 19: 385–396.
|
[15] | Rousseau EP, Sauren AA, van Hout MC, van Steenhoven AA (1983) Elastic and viscoelastic material behaviour of fresh and glutaraldehyde-treated porcine aortic valve tissue. J Biomech 16: 339–48.
|
[16] | Lin HC, Kwan MKW, Woo SLY (1987) On the stress relaxation properties of anterior cruciate ligament (ACL). Proceedings, ASME, Adv. Bioeng 5/6: 47–92.
|
[17] | Huyghe JM, Vancampen DH, Arts T, Heethaar RM (1991) The constitutive behavior of passive heart-muscle tissue - a quasi-linear viscoelastic formulation. J Biomech 24: 841–849.
|
[18] | Kwan MK, Lin TH, Woo SL (1993) On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J Biomech 26: 447–52.
|
[19] | Best TM, McElhaney J, Garrett WE, Myers BS (1994) Characterization of the passive responses of live skeletal muscle using the quasi-linear theory of viscoelasticity. J Biomech 27: 413–9.
|
[20] | Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, et al. (1994) Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 12: 796–803.
|
[21] | Best TM, McElhaney JH, Garrett WE, Myers BS (1995) Axial strain measurements in skeletal muscle at various strain rates. J Biomech Eng 117: 262–5.
|
[22] | Iatridis JC, Setton LA, Weidenbaum M, Mow VC (1997) The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech 30: 1005–1013.
|
[23] | Carew EO, Talman EA, Boughner DR, Vesely I (1999) Quasi-Linear Viscoelastic theory applied to internal shearing of porcine aortic valve leaflets. J Biomech Eng 121: 386–92.
|
[24] | Kim SM, Mcculloch TM, Rim K (1999) Comparison of viscoelastic properties of the pharyngeal tissue: human and canine. Dysphagia 14: 8–16.
|
[25] | Funk JR, Hall GW, Crandall JR, Pilkey WD (2000) Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng 122: 15–22.
|
[26] | Huang CY, Mow VC, Ateshian GA (2001) The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J Biomech Eng - T ASME 123: 410–417.
|
[27] | Toms SR, Dakin GJ, Lemons JE, Eberhardt AW (2002) Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech 35: 1411–1415.
|
[28] | Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, et al. (2003) Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng 31: 599–605.
|
[29] | Abramowitch SD, Woo SL (2004) An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J Biomech Eng 126: 92–7.
|
[30] | Defrate LE, Li G (2007) The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model. Biomech Model Mechan 6: 245–251.
|
[31] | Kohandel M, Sivaloganathan S, Tenti G (2008) Estimation of the quasi-linear viscoelastic parameters using a genetic algorithm. Math Comput Model 47: 266–270.
|
[32] | Thornton GM, Oliynyk A, Frank CB, Shrive NG (1997) Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J Orthop Res 15: 652–656.
|
[33] | Provenzano P, Lakes R, Keenan T, Vanderby R (2001) Nonlinear ligament viscoelasticity. Ann Biomed Eng 29: 908–14.
|
[34] | Provenzano PP, Lakes RS, Corr DT, Vanderby R (2002) Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechan 1: 45–57.
|
[35] | Pryse KM, Nekouzadeh A, Genin GM, Elson EL, Zahalak GI (2003) Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann Biomed Eng 31: 1287–1296.
|
[36] | Nekouzadeh A, Pryse KM, Elson EL, Genin GM (2007) A simplified approach to quasi-linear viscoelastic modeling. J Biomech 40: 3070–3078.
|
[37] | Quaia C, Ying HS, Nichols AM, Optican LM (2009) The viscoelastic properties of passive eye muscles in primates. I: Static forces and step responses. PLoS One 4: e4850.
|
[38] | Fung YC (2004) Biomechanics. Mechanical properties of living tissues. New York: Springer.
|
[39] | Malkin AY (2006) The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers. Polym Sci Ser A+ 48: 39–45.
|
[40] | Bagley RL, Torvik PJ (1983) Fractional calculus - A different approach to the analysis of viscoelastically damped structures. AIAA Journal 21: 741–748.
|
[41] | Ramirez LES, Coimbra CFM (2007) A variable order constitutive relation for viscoelasticity. Ann Phys 16: 543–552.
|
[42] | Emri I, Tschoegl NW (1994) Generating line spectra from experimental responses. 4. Application to experimental-data. Rheol Acta 33: 60–70.
|
[43] | Emri I, Tschoegl NW (1993) Generating line spectra from experimental responses. 1. Relaxation modulus and creep compliance. Rheol Acta 32: 311–321.
|
[44] | Tschoegl NW, Emri I (1993) Generating line spectra from experimental responses. 2. Storage and loss functions. Rheol Acta 32: 322–327.
|
[45] | Emri I, Tschoegl NW (1995) Determination of mechanical spectra from experimental responses. Int J Solids Struct 32: 817–826.
|
[46] | Nigul I, Nigul U (1987) On algorithms of evaluation of Fung's relaxation function parameters. J Biomech 20: 343–52.
|
[47] | Doehring TC, Carew EO, Vesely I (2004) The effect of strain rate on the viscoelastic response of aortic valve tissue: a direct-fit approach. Ann Biomed Eng 32: 223–232.
|
[48] | Pioletti DP, Rakotomanana LR (2000) On the independence of time and strain effects in the stress relaxation of ligaments and tendons. J Biomech 33: 1729–1732.
|
[49] | Rugh WJ (1981) Nonlinear system theory: the Volterra/Wiener approach. Baltimore: Johns Hopkins Press.
|
[50] | Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems: the white-noise approach. New York: Plenum.
|
[51] | Pipkin AC, Rogers TG (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16: 59–72.
|
[52] | Korenberg MJ, Hunter IW (1996) The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng 24: 250–268.
|
[53] | Korenberg MJ, Hunter IW (1990) The identification of nonlinear biological-systems - Wiener kernel approaches. Ann Biomed Eng 18: 629–654.
|
[54] | Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Berlin: Springer.
|