Background The cellular prion protein PrPC is encoded by the Prnp gene. This protein is expressed in the central nervous system (CNS) and serves as a precursor to the misfolded PrPSc isoform in prion diseases. The prototype prion disease is scrapie in sheep, and whereas Prnp exhibits common missense polymorphisms for V136A, R154H and Q171R in ovine populations, genetic variation in mouse Prnp is limited. Recently the CNS glycoprotein Shadoo (Sho) has been shown to resemble PrPC both in a central hydrophobic domain and in activity in a toxicity assay performed in cerebellar neurons. Sho protein levels are reduced in prion infections in rodents. Prompted by these properties of the Sho protein we investigated the extent of natural variation in SPRN. Principal Findings Paralleling the case for ovine versus human and murine PRNP, we failed to detect significant coding polymorphisms that alter the mature Sho protein in a sample of neurologically normal humans, or in diverse strains of mice. However, ovine SPRN exhibited 4 missense mutations and expansion/contraction in a series of 5 tandem Ala/Gly-containing repeats R1-R5 encoding Sho's hydrophobic domain. A Val71Ala polymorphism and polymorphic expansion of wt 67(Ala)3Gly70 to 67(Ala)5Gly72 reached frequencies of 20%, with other alleles including Δ67–70 and a 67(Ala)6Gly73 expansion. Sheep V71, A71, Δ67–70 and 67(Ala)6Gly73 SPRN alleles encoded proteins with similar stability and posttranslational processing in transfected neuroblastoma cells. Significance Frequent coding polymorphisms are a hallmark of the sheep PRNP gene and our data indicate a similar situation applies to ovine SPRN. Whether a common selection pressure balances diversity at both loci remains to be established.
References
[1]
Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24: 519–550.
[2]
Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363–13383.
Goldmann W, Hunter N, Foster JD, Salbaum JM, Beyreuther K, et al. (1990) Two alleles of a neural protein gene linked to scrapie in sheep. Proc Natl Acad Sci USA 87: 2476–2480.
[5]
Laplanche JL, Chatelain J, Westaway D, Thomas S, Dussaucy M, et al. (1993) PrP polymorphisms associated with natural scrapie discovered by denaturing gradient gel electrophoresis. Genomics 15: 30–37.
[6]
Belt PB, Muileman IH, Schreuder BE, Bos-de Ruijter J, Gielkens AL, et al. (1995) Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J Gen Virol 76 (Pt 3): 509–517.
[7]
Westaway D, Zuliani V, Cooper CM, Da Costa M, Neuman S, et al. (1994) Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev 8: 959–969.
[8]
Sawalha RM, Brotherstone S, Conington J, Villanueva B (2007) Lambs with scrapie susceptible genotypes have higher postnatal survival. PLoS ONE 2: e1236.
[9]
Premzl M, Sangiorgio L, Strumbo B, Marshall Graves JA, Simonic T, et al. (2003) Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 314: 89–102.
[10]
Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, et al. (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93: 203–214.
[11]
Watts JC, Drisaldi B, Ng V, Yang J, Strome B, et al. (2007) The CNS glycoprotein Shadoo has PrP(C)-like protective properties and displays reduced levels in prion infections. Embo J 26: 4038–4050.
[12]
Drisaldi B, Coomaraswamy J, Mastrangelo P, Strome B, Yang J, et al. (2004) Genetic mapping of activity determinants within cellular prion proteins: N-terminal modules in PrPC offset pro-apoptotic activity of the doppel helix B/B' region. J Biol Chem.
[13]
Ferris SD, Sage RD, Prager EM, Ritte U, Wilson AC (1983) Mitochondrial DNA evolution in mice. Genetics 105: 681–721.
[14]
Premzl M, Gready JE, Jermiin LS, Simonic T, Marshall Graves JA (2004) Evolution of vertebrate genes related to Prion and Shadoo proteins - clues from comparative genomic analysis. Mol Biol Evol.
[15]
Lampo E, Van Poucke M, Hugot K, Hayes H, Van Zeveren A, et al. (2007) Characterization of the genomic region containing the Shadow of Prion Protein (SPRN) gene in sheep. BMC Genomics 8: 138.
[16]
Dickinson AG (1976) Scrapie in sheep and goats. In: Kimberlin RH, editor. Slow Virus Diseases of Animals and Man. Amsterdam: North-Holland Publishing. pp. 209–241.
[17]
Stewart P, Shen C, Zhao D, Goldmann W (2009) Genetic analysis of the SPRN gene in ruminants reveals polymorphisms in the alanine-rich segment of shadoo protein. J Gen Virol.
[18]
Lloyd SE, Grizenkova J, Pota H, Collinge J (2009) Shadoo (Sprn) and prion disease incubation time in mice. Mamm Genome.
[19]
Beck JA, Campbell T, Adamson G, Poulter M, Uphill J, et al. (2008) Association of a null allele of SPRN with variant Creutzfeldt-Jakob Disease. J Med Genet.
[20]
Soldevila M, Andres AM, Ramirez-Soriano A, Marques-Bonet T, Calafell F, et al. (2006) The prion protein gene in humans revisited: lessons from a worldwide resequencing study. Genome Res 16: 231–239.
[21]
Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30: 575–621.
[22]
Lenzmeier BA, Freudenreich CH (2003) Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet Genome Res 100: 7–24.
[23]
Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Trembaly P, et al. (1998) A Transmembrane Form of the Prion Protein in Neurodegenerative Disease. Science 279: 827–834.
[24]
Stewart RS, Harris DA (2003) Mutational analysis of topological determinants in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during prion infection. J Biol Chem 278: 45960–45968.
[25]
Holter J, Carter D, Leresche N, Crunelli V, Vincent P (2005) A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. J Mol Neurosci 25: 37–51.
[26]
Albrecht A, Mundlos S (2005) The other trinucleotide repeat: polyalanine expansion disorders. Curr Opin Genet Dev 15: 285–293.
[27]
Calado A, Tome FM, Brais B, Rouleau GA, Kuhn U, et al. (2000) Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 9: 2321–2328.
[28]
Caburet S, Demarez A, Moumne L, Fellous M, De Baere E, et al. (2004) A recurrent polyalanine expansion in the transcription factor FOXL2 induces extensive nuclear and cytoplasmic protein aggregation. J Med Genet 41: 932–936.
[29]
Ma B, Nussinov R (2002) Molecular dynamics simulations of alanine rich beta-sheet oligomers: Insight into amyloid formation. Protein Sci 11: 2335–2350.
[30]
Giri K, Bhattacharyya NP, Basak S (2007) pH-dependent self-assembly of polyalanine peptides. Biophys J 92: 293–302.
[31]
Mead S, Stumpf MP, Whitfield J, Beck JA, Poulter M, et al. (2003) Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300: 640–643.
[32]
Kreitman M, Di Rienzo A (2004) Balancing claims for balancing selection. Trends Genet 20: 300–304.
[33]
Soldevila M, Calafell F, Helgason A, Stefansson K, Bertranpetit J (2005) Assessing the signatures of selection in PRNP from polymorphism data: results support Kreitman and Di Rienzo's opinion. Trends Genet 21: 389–391.
[34]
McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, et al. (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol 165: 227–235.
[35]
Flechsig E, Manson JC, Barron R, Aguzzi A, Weissmann C (2004) Knockouts, Knockins, Transgenics and Transplants in Prion Research. In: Prusiner SB, editor. Prion Biology and Diseases. Second ed. Cold Spring Harbor, NY: Cold Spring Harbor Press. pp. 373–434.