全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

HIV-1 Matrix Dependent Membrane Targeting Is Regulated by Gag mRNA Trafficking

DOI: 10.1371/journal.pone.0006551

Full-Text   Cite this paper   Add to My Lib

Abstract:

Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC) assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV) post-transcriptional regulatory element (PRE) mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA) with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.

References

[1]  Demirov DG, Freed EO (2004) Retrovirus budding. Virus Research 106: 87–102.
[2]  Morita E, Sundquist WI (2004) RETROVIRUS BUDDING. Annual Review of Cell and Developmental Biology 20: 395–425.
[3]  Hermida-Matsumoto L, Resh MD (2000) Localization of Human Immunodeficiency Virus Type 1 Gag and Env at the Plasma Membrane by Confocal Imaging. J Virol 74: 8670–8679.
[4]  Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proceedings of the National Academy of Sciences 101: 14889–14894.
[5]  Jouvenet N, Neil SJD, Bess C, Johnson MC, Virgen CA, et al. (2006) Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly. PLoS Biology 4: e435.
[6]  Blom J, Nielsen C, Rhodes JM (1993) An ultrastructural study of HIV-infected human dendritic cells and monocytes/macrophages. APMIS 101: 672–680.
[7]  Nguyen DG, Booth A, Gould SJ, Hildreth JEK (2003) Evidence That HIV Budding in Primary Macrophages Occurs through the Exosome Release Pathway. J Biol Chem 278: 52347–52354.
[8]  Pelchen-Matthews A, Kramer B, Marsh M (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. The Journal of Cell Biology 162: 443–455.
[9]  Raposo G, Moore M, Innes D, Leijendekker R, Leigh-Brown A, et al. (2002) Human Macrophages Accumulate HIV-1 Particles in MHC II Compartments. Traffic 3: 718–729.
[10]  Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M (2007) In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. The Journal of Cell Biology 177: 329–341.
[11]  Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, et al. (2007) HIV-1 Buds Predominantly at the Plasma Membrane of Primary Human Macrophages. PLoS Pathog 3: e36.
[12]  Swanson CM, Puffer BA, Ahmad KM, Doms RW, Malim MH (2004) Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO J 23: 2632–2640.
[13]  Swanson CM, Malim MH (2006) Retrovirus RNA Trafficking: From Chromatin to Invasive Genomes. Traffic 7: 1440–1450.
[14]  Jin J, Sturgeon T, Chen C, Watkins SC, Weisz OA, et al. (2007) Distinct Intracellular Trafficking of Equine Infectious Anemia Virus and Human Immunodeficiency Virus Type 1 Gag during Viral Assembly and Budding Revealed by Bimolecular Fluorescence Complementation Assays. J Virol 81: 11226–11235.
[15]  Bieniasz PD, Cullen BR (2000) Multiple Blocks to Human Immunodeficiency Virus Type 1 Replication in Rodent Cells. J Virol 74: 9868–9877.
[16]  Mariani R, Rasala BA, Rutter G, Wiegers K, Brandt SM, et al. (2001) Mouse-Human Heterokaryons Support Efficient Human Immunodeficiency Virus Type 1 Assembly. J Virol 75: 3141–3151.
[17]  Gomez CY, Hope TJ (2006) Mobility of Human Immunodeficiency Virus Type 1 Pr55Gag in Living Cells. J Virol 80: 8796–8806.
[18]  Perez-Caballero D, Hatziioannou T, Martin-Serrano J, Bieniasz PD (2004) Human Immunodeficiency Virus Type 1 Matrix Inhibits and Confers Cooperativity on Gag Precursor-Membrane Interactions. J Virol 78: 9560–9563.
[19]  Reil H, Bukovsky AA, Gelderblom HR, Gottlinger HG (1998) Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J 17: 2699–2708.
[20]  Saad JS, Miller J, Tai J, Kim A, Ghanam RH, et al. (2006) From the Cover: Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proceedings of the National Academy of Sciences 103: 11364–11369.
[21]  Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, et al. (2004) From the Cover: Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proceedings of the National Academy of Sciences 101: 517–522.
[22]  Chatel-Chaix L, Abrahamyan L, Frechina C, Mouland AJ, DesGroseillers L (2007) The Host Protein Staufen1 Participates in Human Immunodeficiency Virus Type 1 Assembly in Live Cells by Influencing pr55Gag Multimerization. J Virol 81: 6216–6230.
[23]  Ono A, Freed EO (1999) Binding of Human Immunodeficiency Virus Type 1 Gag to Membrane: Role of the Matrix Amino Terminus. J Virol 73: 4136–4144.
[24]  Ding L, Derdowski A, Wang JJ, Spearman P (2003) Independent Segregation of Human Immunodeficiency Virus Type 1 Gag Protein Complexes and Lipid Rafts. J Virol 77: 1916–1926.
[25]  Jager S, Gottwein E, Krausslich HG (2007) Ubiquitination of Human Immunodeficiency Virus Type 1 Gag Is Highly Dependent on Gag Membrane Association. J Virol 81: 9193–9201.
[26]  Hatziioannou T, Martin-Serrano J, Zang T, Bieniasz PD (2005) Matrix-Induced Inhibition of Membrane Binding Contributes to Human Immunodeficiency Virus Type 1 Particle Assembly Defects in Murine Cells. J Virol 79: 15586–15589.
[27]  Spearman P, Horton R, Ratner L, Kuli-Zade I (1997) Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 71: 6582–6592.
[28]  Chan R, Uchil PD, Jin J, Shui G, Ott DE, et al. (2008) Retroviruses Human Immunodeficiency Virus and Murine Leukemia Virus Are Enriched in Phosphoinositides. J Virol 82: 11228–11238.
[29]  Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, et al. (2006) The HIV lipidome: A raft with an unusual composition. Proceedings of the National Academy of Sciences 103: 2641–2646.
[30]  Lindwasser OW, Resh MD (2001) Multimerization of Human Immunodeficiency Virus Type 1 Gag Promotes Its Localization to Barges, Raft-Like Membrane Microdomains. J Virol 75: 7913–7924.
[31]  Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proceedings of the National Academy of Sciences 98: 13925–13930.
[32]  Ono A, Freed EO (2005) Role of Lipid Rafts in Virus Replication. In: Polly R, editor. pp. 311–358. Advances in Virus Research. Virus Structure and Assembly. Academic Press.
[33]  Ono A, Waheed AA, Freed EO (2007) Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. Virology 360: 27–35.
[34]  Hubner W, Chen BK (2006) Inhibition of viral assembly in murine cells by HIV-1 matrix. 352: 27–38.
[35]  Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: Implications for membrane association and assembly. PNAS 93: 3099–3104.
[36]  Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, et al. (1994) Three-dimensional Structure of the Human Immunodeficiency Virus Type 1 Matrix Protein. Journal of Molecular Biology 244: 198–223.
[37]  Scarlata S, Carter C (2003) Role of HIV-1 Gag domains in viral assembly. Biochimica et Biophysica Acta (BBA) - Biomembranes 1614: 62–72.
[38]  Caroni Pico (2001) New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J 20: 4332–4336.
[39]  Golub T, Caroni P (2005) PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J Cell Biol 169: 151–165.
[40]  Lindwasser OW, Resh MD (2002) Myristoylation as a target for inhibiting HIV assembly: Unsaturated fatty acids block viral budding. Proceedings of the National Academy of Sciences 99: 13037–13042.
[41]  Ott DE, Coren LV, Gagliardi TD (2005) Redundant Roles for Nucleocapsid and Matrix RNA-Binding Sequences in Human Immunodeficiency Virus Type 1 Assembly. J Virol 79: 13839–13847.
[42]  Lochrie MA, Waugh S, Pratt DGJ, Clever J, Parslow TG, et al. (1997) In vitro selectin of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein. J Virol 25: 2902–2910.
[43]  Berkowitz R, Fisher J, Goff SP (1996) RNA packaging. Curr Top Microbiol Immunol 214: 177–218.
[44]  Martin KC, Ephrussi A (2009) mRNA Localization: Gene Expression in the Spatial Dimension. Cell 136: 719–730.
[45]  Lqcυyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, et al. (2007) Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function. Cell 131: 174–187.
[46]  Nasioulas G, Hughes SH, Felber BK, Whitcomb JM (1995) Production of avian leukosis virus particles in mammalian cells can be mediated by the interaction of the human immunodeficiency virus protein Rev and the Rev-responsive element. Proceedings of the National Academy of Sciences of the United States of America 92: 11940–11944.
[47]  Beriault V, Clement JF, Levesque K, LeBel C, Yong X, et al. (2004) A Late Role for the Association of hnRNP A2 with the HIV-1 hnRNP A2 Response Elements in Genomic RNA, Gag, and Vpr Localization. J Biol Chem 279: 44141–44153.
[48]  Pollard VW, Malim MH (1998) THE HIV-1 REV PROTEIN. Annual Review of Microbiology 52: 491–532.
[49]  Otero GC, Harris ME, Donello JE, Hope TJ (1998) Leptomycin B Inhibits Equine Infectious Anemia Virus Rev and Feline Immunodeficiency Virus Rev Function but Not the Function of the Hepatitis B Virus Posttranscriptional Regulatory Element. J Virol 72: 7593–7597.
[50]  Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, et al. (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59: 284–291.
[51]  Cook RF, Leroux C, Cook SJ, Berger SL, Lichtenstein DL, et al. (1998) Development and Characterization of an In Vivo Pathogenic Molecular Clone of Equine Infectious Anemia Virus. J Virol 72: 1383–1393.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133