Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set.
References
[1]
Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, et al. (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441(7097): 1153–1156.
[2]
Tirichine L, James EK, Sandal N, Stougaard J (2006) Spontaneous root-nodule formation in the model legume Lotus japonicus: A novel class of mutants nodulates in the absence of rhizobia. Mol Plant Microbe Interact 19(4): 373–382.
[3]
Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5(7): 566–576.
[4]
Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, et al. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425(6958): 637–640.
[5]
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, et al. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425(6958): 585–592.
[6]
Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, et al. (2007) LysM domains mediate lipochitin-oligosaccharide recognition and nfr genes extend the symbiotic host range. EMBO J 26(17): 3923–3935.
[7]
Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, et al. (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17(8): 2217–2229.
[8]
Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, et al. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417(6892): 959–962.
[9]
Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, et al. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417(6892): 962–966.
[10]
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, et al. (2004) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433(7025): 527–531.
[11]
Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, et al. (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303(5662): 1364–1367.
[12]
Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, et al. (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103(2): 359–364.
[13]
Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, et al. (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19(2): 610–624.
[14]
Miwa H, Sun J, Oldroyd GE, Downie JA (2006) Analysis of nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant Microbe Interact 19(8): 914–923.
[15]
Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A 105(51): 20540–20545.
[16]
Chen C, Ane JM, Zhu H (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol 180(2): 311–315.
[17]
Messinese E, Mun JH, Yeun LH, Jayaraman D, Rouge P, et al. (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact 20(8): 912–921.
[18]
Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303(5662): 1361–1364.
[19]
Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308(5729): 1789–1791.
[20]
Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402(6758): 191–195.
[21]
Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, et al. (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142(4): 1739–1750.
[22]
Kalo P, Gleason C, Edwards A, Marsh J, Mitra RM, et al. (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308(5729): 1786–1789.
[23]
Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, et al. (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144(1): 324–335.
[24]
El Yahyaoui F, Kuster H, Amor BB, Hohnjec N, Puhler A, et al. (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136(2): 3159–3176.
[25]
Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, et al. (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140(1): 221–234.
[26]
Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, et al. (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55(3): 504–513.
[27]
Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc Natl Acad Sci U S A 101(27): 10217–10222.
[28]
Kouchi H (2004) Large-scale analysis of gene-expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Research 11: 263–274.
[29]
Suganuma N, Yamamoto A, Itou A, Hakoyama T, Banba M, et al. (2004) cDNA macroarray analysis of gene expression in ineffective nodules induced on the Lotus japonicus sen1 mutant. Mol Plant Microbe Interact 17(11): 1223–1233.
[30]
Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, et al. (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39(4): 487–512.
[31]
Deguchi Y, Banba M, Shimoda Y, Chechetka SA, Suzuri R, et al. (2007) Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation. DNA Res 14(3): 117–133.
[32]
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, et al. (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15(4): 227–239.
[33]
Krusell L, Madsen LH, Sato S, Aubert G, Genua A, et al. (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420(6914): 422–426.
[34]
Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6(12): 242.
[35]
Fudali S, Janakowski S, Sobczak M, Griesser M, Grundler FM, et al. (2008) Two tomato alpha-expansins show distinct spatial and temporal expression patterns during development of nematode-induced syncytia. Physiol Plant 132(3): 370–383.
[36]
Wieczorek K, Hofmann J, Blochl A, Szakasits D, Bohlmann H, et al. (2008) Arabidopsis endo-1,4-beta-glucanases are involved in the formation of root syncytia induced by Heterodera schachtii. Plant J 53(2): 336–351.
[37]
Krusell L, Krause K, Ott T, Desbrosses G, Kramer U, et al. (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17(5): 1625–1636.
[38]
Cohn JR, Uhm T, Ramu S, Nam YW, Kim DJ, et al. (2001) Differential regulation of a family of apyrase genes from Medicago truncatula. Plant Physiol 125(4): 2104–2119.
[39]
Navarro-Gochicoa MT, Camut S, Niebel A, Cullimore JV (2003) Expression of the apyrase-like APY1 genes in roots of Medicago truncatula is induced rapidly and transiently by stress and not by Sinorhizobium meliloti or nod factors. Plant Physiol 131(3): 1124–1136.
[40]
Kim SY, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142(3): 984–992.
[41]
Govindarajulu M, Kim SY, Libault M, Berg RH, Tanaka K, Stacey G, Taylor CG (2008) GS52 ecto-apyrase plays a critical role during soybean nodulation. Plant Physiol 149(2): 994–1004.
[42]
Culley DE, Horovitz D, Hadwiger LA (1995) Molecular characterization of disease-resistance response gene DRR206-d from Pisum sativum (L.). Plant Physiol 107(1): 301–302.
[43]
Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, et al. (1994) The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78(6): 1101–1115.
[44]
Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan JA, et al. (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364(4): 625–636.
[45]
Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41(7): 893–897.
[46]
Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13(8): 1835–1849.
[47]
Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, et al. (2007) A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science 315(5808): 101–104.
[48]
Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, et al. (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315(5808): 104–107.
[49]
Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18(10): 2680–2693.
[50]
D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124(4): 1706–1717.
[51]
Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59: 519–546.
[52]
Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, et al. (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci U S A 103(50): 19206–19211.
[53]
Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, et al. (2007) Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci U S A 104(36): 14537–14542.
[54]
Hala M, Cole R, Synek L, Drdova E, Pecenkova T, et al. (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20(5): 1330–1345.
[55]
Weis K (2002) Nucleocytoplasmic transport: Cargo trafficking across the border. Curr Opin Cell Biol 14(3): 328–335.
[56]
Menon BB, Sarma NJ, Pasula S, Deminoff SJ, Willis KA, et al. (2005) Reverse recruitment: The Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc Natl Acad Sci U S A 102(16): 5749–5754.
[57]
Suganuma N, Nakamura Y, Yamamoto M, Ohta T, Koiwa H, et al. (2003) The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Mol Genet Genomics 269(3): 312–320.
[58]
Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132(3): 449–462.
[59]
Yin Z, Chen J, Zeng L, Goh M, Leung H, et al. (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact 13(8): 869–876.
[60]
Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, et al. (2005) Legume nodule senescence: Roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165(3): 683–701.
[61]
Liu X, Bush DR (2006) Expression and transcriptional regulation of amino acid transporters in plants. Amino Acids 30(2): 113–120.
[62]
Miller AJ, Fan X, Shen Q, Smith SJ (2008) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59(1): 111–119.
[63]
Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, et al. (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277(7): 4738–4746.
[64]
Leidi EOEO, Rodriguez- Navarro DN (2000) Nitrogen and phosphorus availability limit N2 fixation in bean. New Phytol 147(2): 337–346.
[65]
Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, et al. (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5): 501–506.
[66]
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1): 5–17.
[67]
Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53: 203–224.
[68]
Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, et al. (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259(4): 414–423.
[69]
Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, et al. (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume lotus japonicus. Plant J 44(3): 372–381.
[70]
Fukai E, Dobrowolska AD, Madsen LH, Madsen EB, Umehara Y, et al. (2008) Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume lotus japonicus. Plant Mol Biol 68(6): 653–663.
[71]
Broughton D (1971) Media for legumes. Biochem J 125: 1075–1080.
[72]
Lopez-Lara IM, van den Berg JD, Thomas-Oates JE, Glushka J, Lugtenberg BJ, et al. (1995) Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol Microbiol 15(4): 627–638.
[73]
Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F (2004) A model based background adjustment for oligonucleotide expression arrays. Johns Hopkins University, Dept of Biostatistics Working Papers Working Paper 1 Bepress com/jhubiostat/paper1.
[74]
Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy–analysis of affymetrix GeneChip data at the probe level. Bioinformatics 20(3): 307–315.
[75]
Smyth GK (2005) Limma: Linear models for microarray data. In: Gentleman R, Carey S, Dudoit R, Irizarry R, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer. pp. 397–397-420.
[76]
Goffard N, Weiller G (2007) GeneBins: A database for classifying gene expression data, with application to plant genome arrays. BMC Bioinformatics 8: 87.