全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Are Small GTPases Signal Hubs in Sugar-Mediated Induction of Fructan Biosynthesis?

DOI: 10.1371/journal.pone.0006605

Full-Text   Cite this paper   Add to My Lib

Abstract:

External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling.

References

[1]  Vijn I, Smeekens S (1999) Fructan: More than a reserve carbohydrate? Plant Physiol 120: 351–359.
[2]  Ritsema T, Smeekens SC (2003) Engineering fructan metabolism in plants. J Plant Physiol 160: 811–820.
[3]  Muller J, Aeschbacher RA, Sprenger N, Boller T, Wiemken A (2000) Disaccharide-mediated regulation of sucrose:fructan-6- fructosyltransferase, a key enzyme of fructan synthesis in barley leaves. Plant Physiol 123: 265–274.
[4]  Wang C, Van den Ende W, Tillberg JE (2000) Fructan accumulation induced by nitrogen deficiency in barley leaves correlates with the level of sucrose:fructan 6-fructosyltransferase mRNA. Planta 211: 701–707.
[5]  Wei JZ, Chatterton NJ, Harrison PA, Wang RR, Larson SR (2002) Characterization of fructan biosynthesis in big bluegrass (Poa secunda). J Plant Physiol 159: 705–715.
[6]  Simmen U, Obenland DM, Boller T, Wiemken A (1993) Fructan synthesis in excised barley leaves. Identification of two sucrose-sucrose fructosyltransferases induced by light and their separation from constitutive invertases. Plant Physiology 101: 459–468.
[7]  Nagaraj VJ, Riedl R, Boller T, Wiemken A, Meyer AD (2001) Light and sugar regulation of the barley sucrose: fructan 6-fructosyltransferase promoter. J Plant Physiol 158: 1601–1607.
[8]  Parikh K, Peppelenbosch MP, Ritsema T (2009) Kinome profiling using peptide arrays in eukaryotic cells. Methods Mol Biol 527: 269–80.
[9]  Weyens G, Ritsema T, Van DK, Meyer D, Lommel M, Lathouwers J, et al. (2004) Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnol J 2: 321–327.
[10]  Ritsema T, Verhaar A, Vijn I, Smeekens S (2005) Using natural variation to investigate the function of individual amino acids in the sucrose-binding box of fructan:fructan 6G-fructosyltransferase (6G-FFT) in product formation. Plant Mol Biol 58: 597–607.
[11]  Ritsema T, Hernandez L, Verhaar A, Altenbach D, Boller T, Wiemken A, et al. (2006) Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant J 48: 228–237.
[12]  Martinez No?l G, Tognetti JA, Pontis HG (2001) Protein kinase and phosphatase activities are involved in fructan synthesis initiation mediated by sugars. Planta 213: 640–646.
[13]  Martinez-Noel G, Tognetti J, Nagaraj V, Wiemken A, Pontis H (2006) Calcium is essential for fructan synthesis induction mediated by sucrose in wheat. Planta 225: 183–191.
[14]  Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6: 1711–1726.
[15]  Forsberg J, Allen JF (2001) Protein tyrosine phosphorylation in the transition to light state 2 of chloroplast thylakoids. Photosynth Res 68: 71–79.
[16]  Mayrose M, Bonshtien A, Sessa G (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem 279: 14819–14827.
[17]  Hirayama T, Oka A (1992) Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol Biol 20: 653–662.
[18]  Rudrabhatla P, Reddy M, Rajasekharan R (2006) Genome-Wide Analysis and Experimentation of Plant Serine/Threonine/Tyrosine-Specific Protein Kinases. Plant Molecular Biology 60: 293–319.
[19]  Rudrabhatla P, Rajasekharan R (2004) Functional characterization of peanut serine/threonine/tyrosine protein kinase: molecular docking and inhibition kinetics with tyrosine kinase inhibitors. Biochemistry 43: 12123–12132.
[20]  Hirayama T, Oka A (1992) Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol Biol 20: 653–662.
[21]  Diks SH, Parikh K, van der Sijde M, Joore J, Ritsema T, Peppelenbosch MP (2007) Evidence for a minomal eukaryotic phosphoproteome? PLoS ONE 2: e777.
[22]  Ritsema T, Joore J, van WW, Pieterse CM (2007) Kinome profiling of Arabidopsis using arrays of kinase consensus substrates. Plant Methods 3: 3.
[23]  Yanagihara N, Tachikawa E, Izumi F, Yasugawa S, Yamamoto H, Miyamoto E (1991) Staurosporine: an effective inhibitor for Ca2+/calmodulin-dependent protein kinase II. J Neurochem 56: 294–298.
[24]  Wolf M, Baggiolini M (1988) The protein kinase inhibitor staurosporine, like phorbol esters, induces the association of protein kinase C with membranes. Biochem Biophys Res Commun 154: 1273–1279.
[25]  Kudinov Y, Wiseman CL, Kharazi AI (2003) Phorbol myristate acetate and Bryostatin 1 rescue IFN-gamma inducibility of MHC class II molecules in LS1034 colorectal carcinoma cell line. Cancer Cell Int 3: 4.
[26]  Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, et al. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132: 666–680.
[27]  Martinez-Noel G, Nagaraj VJ, Calo G, Wiemken A, Pontis HG (2007) Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. Plant Physiology and Biochemistry 45: 410–419.
[28]  Mayrose M, Bonshtien A, Sessa G (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem 279: 14819–14827.
[29]  Hirayama T, Oka A (1992) Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol Biol 20: 653–662.
[30]  Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. Journal of Biological Chemistry 275: 7521–7526.
[31]  Favre B, Turowski P, Hemmings BA (1997) Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem 272: 13856–13863.
[32]  Kikkawa U, Takai Y, Tanaka Y, Miyake R, Nishizuka Y (1983) Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 258: 11442–11445.
[33]  Barizza E, Lo Schiavo F, Terzi M, Filippini F (1999) Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS letters 447: 191–194.
[34]  MacRobbie EAC (2002) From the Cover: Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. PNAS 99: 11963–11968.
[35]  Ali N, Halfter U, Chua NH (1994) Cloning and biochemical characterization of a plant protein kinase that phosphorylates serine, threonine, and tyrosine. J Biol Chem 269: 31626–31629.
[36]  Rudrabhatla P, Rajasekharan R (2002) Developmentally Regulated Dual-Specificity Kinase from Peanut That Is Induced by Abiotic Stresses. Plant Physiol 130: 380–390.
[37]  Reddy MM, Rajasekharan R (2007) Serine/threonine/tyrosine protein kinase from Arabidopsis thaliana is dependent on serine residues for its activity. Archives of Biochemistry and Biophysics 460: 122–128.
[38]  Miranda-Saavedra D, Barton GJ (2007) Classification and functional annotation of eukaryotic protein kinases. proteins 68: 893–914.
[39]  Shimotohno A, Ohno R, Bisova K, Sakaguchi N, Huang J, Koncz C (2006) Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. The Plant Journal 47: 701–710x.
[40]  Menges M, Samland AK, Planchais S, Murray JA (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18: 893–906.
[41]  Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH (2000) Sugar Control of the Plant Cell Cycle: Differential Regulation of Arabidopsis D-Type Cyclin Gene Expression. Mol Cell Biol 20: 4513–4521.
[42]  Nibau C, Wu Hm, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends In Plant Science 11: 309–315.
[43]  Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the Small GTPase Gene Superfamily of Arabidopsis. Plant Physiol 131: 1191–1208.
[44]  Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Current Opinion in Plant Biology 7: 527–536.
[45]  Shichrur K, Yalovsky S (2006) Turning ON the switch - RhoGEFs in plants. Trends In Plant Science 11: 57–59.
[46]  Berken A, Thomas C, Wittinghofer A (2005) A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436: 1176–1180.
[47]  Peppelenbosch MP, Tertoolen LG, de Vries-Smits AM, Qiu RG, M'Rabet L, Symons MH (1996) Rac-dependent and -independent pathways mediate growth factor-induced Ca2+ influx. J Biol Chem 271: 7883–7886.
[48]  Gross SD, Anderson RA (1998) Casein Kinase I: Spatial Organization and Positioning of a Multifunctional Protein Kinase Family. Cellular Signalling 10: 699–711.
[49]  Homma MK, Homma Y (2005) Regulatory role of CK2 during the progression of cell cycle. Molecular and Cellular Biochemistry 274: 47–52.
[50]  Poole A, Poore T, Bandhakavi S, McCann RO, Hanna DE, Glover CVC (2005) A global view of CK2 function and regulation. Molecular and Cellular Biochemistry 274: 163–170.
[51]  Allada R, Meissner RA (2005) Casein kinase 2, circadian clocks, and the flight from mutagenic light. Molecular and Cellular Biochemistry 274: 141–149.
[52]  Habas R, He X (2007) Cell Signaling: Moving to a Wnt-Rap. Current Biology 17: R474–R477.
[53]  Li X, Zhou L, Gorodeski GI (2006) Estrogen Regulates Epithelial Cell Deformability by Modulation of Cortical Actomyosin through Phosphorylation of Nonmuscle Myosin Heavy-Chain II-B Filaments. Endocrinology 147: 5236–5248.
[54]  Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology 16: 522–529.
[55]  Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, bu-Abied M, et al. (2005) Ectopic Expression of an Activated RAC in Arabidopsis Disrupts Membrane Cycling. Mol Biol Cell 16: 1913–1927.
[56]  Yamana N, Arakawa Y, Nishino T, Kurokawa K, Tanji M, Itoh RE, et al. (2006) The Rho-mDia1 Pathway Regulates Cell Polarity and Focal Adhesion Turnover in Migrating Cells through Mobilizing Apc and c-Src. Mol Cell Biol 26: 6844–6858.
[57]  Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends In Plant Science 12: 20–28.
[58]  Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, et al. (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54: 467–475.
[59]  Francis D, Halford N (2006) Nutrient Sensing in Plant Meristems. Plant Molecular Biology 60: 981–993.
[60]  Carling D (2005) AMP-activated protein kinase: balancing the scales. Biochimie 87: 87–91.
[61]  Kelly-Skupek MN, Irving HR (2006) Pharmacological evidence for activation of phospholipid and small GTP binding protein signalling cascades by Nod factors. Plant Physiology and Biochemistry 44: 132–142.
[62]  Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyr?an-4-one(LY294002). J Biol Chem 269: 5241–5248.
[63]  Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F (2004) Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol 134: 1527–1535.
[64]  Wang Z, Oh E, Thurmond DC (2007) Glucose-stimulated Cdc42 Signaling Is Essential for the Second Phase of Insulin Secretion. J Biol Chem 282: 9536–9546.
[65]  Gibson , SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8: 93–102.
[66]  Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133