全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Styryl-Based and Tricyclic Compounds as Potential Anti-Prion Agents

DOI: 10.1371/journal.pone.0024844

Full-Text   Cite this paper   Add to My Lib

Abstract:

Prion diseases currently have no effective therapy. These illnesses affect both animal and human populations, and are characterized by the conformational change of a normal self protein PrPC (C for cellular) to a pathological and infectious conformer, PrPSc (Sc for scrapie). We used a well characterized tissue culture model of prion infection, where mouse neuroblastoma cells (N2a) were infected with 22L PrPSc, to screen compounds for anti-prion activity. In a prior study we designed a library of styryl based, potential imaging compounds which were selected for high affinity binding to Alzheimer's disease β-amyloid plaques and good blood-brain barrier permeability. In the current study we screened this library for activity in the N2a/22L tissue culture system. We also tested the anti-prion activity of two clinically used drugs, trimipramine and fluphenazine, in the N2a/22L system. These were selected based on their structural similarity to quinacrine, which was previously reported to have anti-prion activity. All the compounds were also screened for toxicity in tissue culture and their ability to disaggregate amyloid fibrils composed of PrP and β-amyloid synthetic peptides in vitro. Two of the imaging agents, 23I and 59, were found to be both effective at inhibiting prion infection in N2a/22L tissue culture and to be non-toxic. These two compounds, as well as trimipramine and fluphenazine were evaluated in vivo using wild-type CD-1 mice infected peripherally with 139A PrPSc. All four agents significantly prolonged the asymptomatic incubation period of prion infection (p<0.0001 log-rank test), as well as significantly reducing the degree of spongiform change, astrocytosis and PrPSc levels in the brains of treated mice. These four compounds can be considered, with further development, as candidates for prion therapy.

References

[1]  Norrby E (2011) Prions and protein folding diseases. J Intern Med. in press.
[2]  Wisniewski T, Goni F (2010) Immunomodulation for Prion and Prion Related Diseases. Expert Rev Vaccines 9: 1441–1452.
[3]  Aguzzi A, Sigurdson C, Heikenwalder M (2008) Molecular Mechanisms of Prion Pathogenesis. Annu Rev Pathol 3: 11–40.
[4]  Cobb NJ, Surewicz WK (2009) Prion diseases and their biochemical mechanisms. Biochem 48: 2574–2585.
[5]  Gambetti P, Dong Z, Yuan J, Xiao X, Zheng M, et al. (2008) A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol 63: 697–708.
[6]  Trevitt CR, Collinge J (2006) A systematic review of prion therapeutics in experimental models. Brain 129: 2241–2265.
[7]  Brown P (2008) Transmissible spongiform encephalopathy in the 21st century: neuroscience for the clinical neurologist. Neurol 70: 713–722.
[8]  Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ (2009) Therapeutic interventions ameliorating prion disease. Expert Rev Anti Infect Ther 7: 83–105.
[9]  Li L, Napper S, Cashman NR (2010) Immunotherapy for prion diseases: opportunities and obstacles. Immunotherapy 2: 269–282.
[10]  Marsh RF, Kincaid AE, Bessen RA, Bartz JC (2005) Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J Virol 79: 13794–13796.
[11]  Sigurdson CJ (2008) A prion disease of cervids: chronic wasting disease. Vet Res 39: 41.
[12]  Race B, Meade-White KD, Miller MW, Barbian KD, Rubenstein R, et al. (2009) Susceptibilities of nonhuman primates to chronic wasting disease. Emerg Infect Dis 15: 1366–1376.
[13]  Poli G, Martino PA, Villa S, Carcassola G, Giannino ML, et al. (2004) Evaluation of anti-prion activity of congo red and its derivatives in experimentally infected hamsters. Arzneimittelforschung 54: 406–415.
[14]  Ishikawa K, Kudo Y, Nishida N, Suemoto T, Sawada T, et al. (2006) Styrylbenzoazole derivatives for imaging of prion plaques and treatment of transmissible spongiform encephalopathies. J Neurochem 99: 198–205.
[15]  Webb S, Lekishvili T, Loeschner C, Sellarajah S, Prelli F, et al. (2007) Mechanistic insights into prion curing by novel anti-prion compounds. J Virol 81: 10729–10741.
[16]  Kawasaki Y, Kawagoe K, Chen CJ, Teruya K, Sakasegawa Y, et al. (2007) Orally administered amyloidophilic compound is effective in prolonging the incubation periods of animals cerebrally infected with prion diseases in a prion strain-dependent manner. J Virol 81: 12889–12898.
[17]  Korth C, May BC, Cohen FE, Prusiner SB (2001) Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA 98: 9836–9841.
[18]  Appleby BS (2009) Psychotropic medications and the treatment of human prion diseases. CNS Neurol Disord Drug Targets 8: 353–362.
[19]  Li Q, Min J, Namm J, Kim E, Lui R, et al. (2007) Stryl-based compounds as potential in vivo imaging agents for β-amyloid plaques. Chembiochem 8: 1679–1687.
[20]  Sadowski MJ, Pankiewicz J, Prelli F, Scholtzova H, Spinner DS, et al. (2009) Anti-PrP Mab 6D11 suppresses PrPSc replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system in vivo. Neurobiol Dis 34: 267–278.
[21]  Pankiewicz J, Prelli F, Sy MS, Kascsak RJ, Kascsak RB, et al. (2006) Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur J Neurosci 24: 2635–2647.
[22]  Prusiner SB (2001) Neurodegenerative diseases and prions. N Eng J Med 344: 1516–1526.
[23]  Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, et al. (2003) New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol 77: 10288–10294.
[24]  Barret A, Tagliavini F, Forloni G, Bate C, Salmona M, et al. (2003) Evaluation of quinacrine treatment for prion diseases. J Virol 77: 8462–8469.
[25]  Collins SJ, Lewis V, Brazier M, Hill AF, Fletcher A, et al. (2002) Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann Neurol 52: 503–506.
[26]  Follette P (2003) New perspectives for prion therapeutics meeting. Prion disease treatment's early promise unravels. Science 299: 191–192.
[27]  Ingrosso L, Ladogana A, Pocchiari M (1995) Congo red prolongs the incubation period in scrapie-infected hamsters. J Virol 69: 506–508.
[28]  Spinner DS, Kascsak RB, LaFauci G, Meeker HC, Ye X, et al. (2007) CpG oligodeoxynucleotide-enhanced humoral immune response and production of antibodies to prion protein PrPSc in mice immunized with 139A scrapie-associated fibrils. J Leukoc Biol 14: 36–43.
[29]  Goni F, Prelli F, Schreiber F, Scholtzova H, Chung E, et al. (2008) High titers of mucosal and systemic anti-PrP antibodies abrogates oral prion infection in mucosal vaccinated mice. Neurosci 153: 679–686.
[30]  Ye X, Scallet AC, Kascsak RJ, Carp RI (1998) Astrocytosis and amyloid deposition in scrapie-infected hamsters. Brain Res 809: 277–287.
[31]  Chung E, Ji Y, Sun Y, Kascsak R, Kascsak RB, et al. (2010) Anti-PrPC monoclonal antibody infusion as a novel treatment for Aβ oligomer cognitive cognitive deficits. BMC Neuroscience 11: 130.
[32]  Sadowski M, Pankiewicz J, Scholtzova H, Mehta P, Prelli F, et al. (2006) Blocking the apolipoproteinE/Amyloid β interaction reduces the parenchymal and vascular amyloid-β deposition and prevents memory deficit in AD transgenic mice. Proc Natl Acad Sci (USA) 103: 18787–18792.
[33]  Sadowski M, Pankiewicz J, Scholtzova H, Ripellino JA, Li Y, et al. (2004) Blocking the apolipoprotein E/?-amyloid interaction reduces β-amyloid toxicity and decreases β-amyloid load in transgenic mice. Am J Pathol 165: 937–948.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133