[1] | Lipsitch M, Bergstrom CT, Levin B (2000) The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. Proc Natl Acad Sci USA 97: 1938–1943.
|
[2] | Kiszewski A, Johns B, Schapira A, Delacollette C, Crowell V, et al. (2007) Estimated global resources needed to attain international malaria control goals. Bull World Health Organ 85: 623–630.
|
[3] | Monto A (2006) Vaccines and antiviral drugs in pandemic preparedness. J Infect Dis 12: 55–60.
|
[4] | Dye C, Gay N (2003) Epidemiology: modeling the SARS epidemic. Science 300: 1884–1885.
|
[5] | Sani A, Kroesea D (2008) Controlling the number of HIV infectives in a mobile population. Math Biosci 213: 103–112.
|
[6] | May R, Anderson R (1984) Spatial heterogeneity and design of immunization programs. Math Biosci 72: 83–111.
|
[7] | Hethcote H, van Ark J (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math Biosci 84: 85–118.
|
[8] | Zaric G, Brandeau M (2002) Dynamic resource allocation for epidemic control in multiple populations. IMA J Math Appl Med Biol 19: 235–255.
|
[9] | Brandeau M, Zaric G, Ricther A (2003) Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis. J Health Econ 22: 575–598.
|
[10] | Rowthorn R, Laxminaryan R, Gilligan C (2009) Optimal control of epidemics in metapopulations. JRSoc Interface 6: 1135–1144.
|
[11] | Keeling M, White P (2010) Targeting vaccination against novel infections: risk, age and spatial structure for pandemic influenza in great britain. JRSoc Interface. doi:10.1098.
|
[12] | Dushoff J, Plotkin J, Viboud C, Simonsen L, Miller M, et al. (2007) Vaccinating to protect a vulnerable subpopulation. PLoS Med 4: e174.
|
[13] | Aron J (1988) Mathematical modeling of immunity to malaria. Mathematical Biosciences 90: 385–396.
|
[14] | Filipe J, Riley E, Drakeley C, Sutherland C, Ghani A (2007) Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol 3: e255.
|
[15] | Castillo-Chavez C, Feng Z (1997) To treat or not to treat: the case of tuberculosis. J Math Biol 35: 629–645.
|
[16] | Grassly N, Fraser C, Garnett G (2005) Host immunity and synchronized epidemics of syphilis across the united states. Nature 433: 417–421.
|
[17] | Forster G, Gilligan C (2007) Optimizing the control of disease infestations at the landscape scale. Proc Natl Acad Sci USA 104: 4984–4989.
|
[18] | Goldman S, Lightwood J (2002) Cost optimization in the SIS model of infectious disease with treatment. Top Econ Anal Policy 2: 1–22.
|
[19] | Hanski I (1998) Metapopulation dynamics. Nature 396: 41–49.
|
[20] | Keeling M, Grenfell TD (2000) Individual-based perspectives on R0. J Theor Biol 203: 51–61.
|
[21] | Strosberg M (2006) Allocating scarce resources in a pandemic: Ethical and public policy dimensions. Virtual Mentor (Ethics J Am Med Ass) 8: 241–244.
|
[22] | Kaplan E, Merson M (2002) Allocating hiv-prevention resources: balancing efficiency and equity. Am J Pub Health 92: 1905–1907.
|
[23] | Seierstad A, Sydsaeter K (1986) Optimal control theory with economic applications. New York, NY, USA: Elsevier North-Holland, Inc.
|
[24] | Agrachev A, Sachkov Y (2004) Control theory from the geometric viewpoint. Springer-Verlag, New York, in: encyclopedia of mathematical sciences, vol. 87. edition.
|
[25] | HHS (2007) hhs pandemic influenza plan. Technical report, United States Department of Health and Human Services. URL http://www.hhs.gov/pandemic/plan/sup6.ht?ml. accessed 2010 March 21.
|
[26] | Wu J, Riley S, Leung G (2007) Spatial considerations for the allocation of pre-pandemic influenza vaccination in the united states. Proc R Soc Lond B 274: 2811–2817.
|
[27] | Ndeffo-Mbah M, Gilligan C (2010) Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission. J Theor Biol 262: 757–763.
|
[28] | Medlock J, Galvani A (2009) Optimizing influenza vaccine distribution. Science 325: 1705–1708.
|
[29] | Wallinga J, van Bovan M, Lipsitch M (2010) Optimizing infectious disease interventions during an emerging epidemic. PNAS 107: 923–928.
|
[30] | Goldstein E, Apolloni A, Lewis B, Miller J, Macauley M, et al. (2010) Distribution of vaccine/antivirals and the ‘least spread line’ in a stratified population. J R Soc Interface 7: 755–764.
|
[31] | Tanner M, Sattenspiel L, Ntaimo L (2008) Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Math Biosci 215: 144–151.
|
[32] | Merl D, Johnson R, Gramacy B, Mangel M (2009) A statistical framework for the adaptive management of epidemiological interventions. PLoS ONE 4: e5087.
|
[33] | Ndeffo-Mbah M, Forster G, Wesseler J, Gilligan C (2010) Economically optimal timing of crop disease control in the presence of uncertainty: an options approach. JRSoc Interface 7: 1421–1428.
|
[34] | Heffernan J, Simth R, Wahl L (2005) Perspectives on the basic reproductive ratio. J R Soc Interface 2: 281–293.
|
[35] | Behncke H (2000) Optimal control of deterministic epidemics. Optim Contr Appl Meth 21: 269–285.
|
[36] | Dorfman R (1969) An economic interpretation of optimal control theory. Amer Econ Rev 59: 817–831.
|