全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

SPL7013 Gel (VivaGel?) Retains Potent HIV-1 and HSV-2 Inhibitory Activity following Vaginal Administration in Humans

DOI: 10.1371/journal.pone.0024095

Full-Text   Cite this paper   Add to My Lib

Abstract:

SPL7013 Gel (VivaGel?) is a microbicide in development for prevention of HIV and HSV. This clinical study assessed retention and duration of antiviral activity following vaginal administration of 3% SPL7013 Gel in healthy women. Participants received 5 single doses of product with ≥5 days between doses. A cervicovaginal fluid (CVF) sample was collected using a SoftCup? pre-dose, and immediately, or 1, 3, 12 or 24 h post-dose. HIV-1 and HSV-2 antiviral activities of CVF samples were determined in cell culture assays. Antiviral activity in the presence of seminal plasma was also tested. Mass and concentration of SPL7013 in CVF samples was determined. Safety was assessed by reporting of adverse events. Statistical analysis was performed using the Wilcoxon signed-rank test with Bonferroni adjustment; p≤0.003 was significant. Eleven participants completed the study. Inhibition of HIV-1 and HSV-2 by pre-dose CVF samples was negligible. CVF samples obtained immediately after dosing almost completely inhibited (median, interquartile range) HIV-1 [96% (95,97)] and HSV-2 [86% (85,94)], and activity was maintained in all women at 3 h (HIV-1 [96% (95,98), p = 0.9]; HSV-2 [94% (91,97), p = 0.005]). At 24 h, >90% of initial HIV-1 and HSV-2 inhibition was maintained in 6/11 women. SPL7013 was recovered in CVF samples obtained at baseline (46% of 105 mg dose). At 3 and 24 h, 22 mg and 4 mg SPL7013, respectively, were recovered. More than 70% inhibition of HIV-1 and HSV-2 was observed if there was >0.5 mg SPL7013 in CVF samples. High levels of antiviral activity were retained in the presence of seminal plasma. VivaGel was well tolerated with no signs or symptoms of vaginal, vulvar or cervical irritation reported. Potent antiviral activity was observed against HIV-1 and HSV-2 immediately following vaginal administration of VivaGel, with activity maintained for at least 3 h post-dose. The data provide evidence of antiviral activity in a clinical setting, and suggest VivaGel could be administered up to 3 h before coitus. Trial Registration The study is registered at ClinicalTrials.gov under identifier: NCT00740584

References

[1]  UNAIDS (2008) Joint United Nations Programme on HIV/AIDS (UNAIDS). Report on the global AIDS epidemic.
[2]  Balzarini J, Van Damme L (2007) Microbicide drug candidates to prevent HIV infection. Lancet 369: 787–797.
[3]  Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, et al. (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329: 1168–1174.
[4]  Rupp R, Rosenthal SL, Stanberry LR (2007) VivaGel (SPL7013 Gel): a candidate dendrimer--microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2: 561–566.
[5]  Tyssen D, Henderson SA, Johnson A, Sterjovski J, Moore K, et al. (2010) Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLoS ONE 5: e12309.
[6]  McCarthy TD, Karellas P, Henderson SA, Giannis M, O'Keefe DF, et al. (2005) Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2: 312–318.
[7]  Bourne N, Stanberry LR, Kern ER, Holan G, Matthews B, et al. (2000) Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob Agents Chemother 44: 2471–2474.
[8]  Dezzutti CS, James VN, Ramos A, Sullivan ST, Siddig A, et al. (2004) In vitro comparison of topical microbicides for prevention of human immunodeficiency virus type 1 transmission. Antimicrob Agents Chemother 48: 3834–3844.
[9]  Lackman-Smith C, Osterling C, Luckenbaugh K, Mankowski M, Snyder B, et al. (2008) Development of a comprehensive human immunodeficiency virus type 1 screening algorithm for discovery and preclinical testing of topical microbicides. Antimicrob Agents Chemother 52: 1768–1781.
[10]  Gong E, Matthews B, McCarthy T, Chu J, Holan G, et al. (2005) Evaluation of dendrimer SPL7013, a lead microbicide candidate against herpes simplex viruses. Antiviral Res 68: 139–146.
[11]  Shattock RJ, Moore JP (2003) Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 1: 25–34.
[12]  Abner SR, Guenthner PC, Guarner J, Hancock KA, Cummins JE , et al. (2005) A human colorectal explant culture to evaluate topical microbicides for the prevention of HIV infection. J Infect Dis 192: 1545–1556.
[13]  Cummins JE , Guarner J, Flowers L, Guenthner PC, Bartlett J, et al. (2007) Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob Agents Chemother 51: 1770–1779.
[14]  Sonza S, Johnson A, Tyssen D, Spelman T, Lewis GR, et al. (2009) Enhancement of human immunodeficiency virus type 1 replication is not intrinsic to all polyanion-based microbicides. Antimicrob Agents Chemother 53: 3565–3568.
[15]  Jiang YH, Emau P, Cairns JS, Flanary L, Morton WR, et al. (2005) SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res Hum Retroviruses 21: 207–213.
[16]  Bernstein DI, Stanberry LR, Sacks S, Ayisi NK, Gong YH, et al. (2003) Evaluations of unformulated and formulated dendrimer-based microbicide candidates in mouse and guinea pig models of genital herpes. Antimicrob Agents Chemother 47: 3784–3788.
[17]  Patton DL, Cosgrove Sweeney YT, McCarthy TD, Hillier SL (2006) Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob Agents Chemother 50: 1696–1700.
[18]  O'Loughlin J, Millwood IY, McDonald HM, Price CF, Kaldor JM, et al. (2010) Safety, Tolerability, and Pharmacokinetics of SPL7013 Gel (VivaGel(R)): A Dose Ranging, Phase I Study. Sex Transm Dis 37: 100–104.
[19]  Chen MY, Millwood IY, Wand H, Poynten M, Law M, et al. (2009) A randomized controlled trial of the safety of candidate microbicide SPL7013 gel when applied to the penis. J Acquir Immune Defic Syndr 50: 375–380.
[20]  Keller MJ, Zerhouni-Layachi B, Cheshenko N, John M, Hogarty K, et al. (2006) PRO 2000 gel inhibits HIV and herpes simplex virus infection following vaginal application: a double-blind placebo-controlled trial. J Infect Dis 193: 27–35.
[21]  Lacey CJ, Wright A, Weber JN, Profy AT (2006) Direct measurement of in-vivo vaginal microbicide levels of PRO 2000 achieved in a human safety study. AIDS 20: 1027–1030.
[22]  Keller MJ, Mesquita PM, Torres NM, Cho S, Shust G, et al. (2010) Postcoital bioavailability and antiviral activity of 0.5% PRO 2000 gel: implications for future microbicide clinical trials. PLoS One 5: e8781.
[23]  Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, et al. (2004) Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306: 485–487.
[24]  Neurath AR, Strick N, Li YY (2006) Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides. BMC Infect Dis 6: 150.
[25]  Patel S, Hazrati E, Cheshenko N, Galen B, Yang H, et al. (2007) Seminal plasma reduces the effectiveness of topical polyanionic microbicides. J Infect Dis 196: 1394–1402.
[26]  Boskey ER, Moench TR, Hees PS, Cone RA (2003) A self-sampling method to obtain large volumes of undiluted cervicovaginal secretions. Sex Transm Dis 30: 107–109.
[27]  Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, et al. (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233: 215–219.
[28]  29: DAIDS Regulatory Support Center (RSC) website, Safety and Pharmacovigilance available at: http://rsc.tech-res.com/safetyandpharmac?ovigilance/ Accessed 2011 August .
[29]  O'Connor TJ, Kinchington D, Kangro HO, Jeffries DJ (1995) The activity of candidate virucidal agents, low pH and genital secretions against HIV-1 in vitro. Int J STD AIDS 6: 267–272.
[30]  Olmsted SS, Khanna KV, Ng EM, Whitten ST, Johnson ON , et al. (2005) Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model. BMC Infect Dis 5: 79.
[31]  Connor RI (2006) Sensitivity of non-clade B primary HIV-1 isolates to mildly acidic pH. J Acquir Immune Defic Syndr 43: 499–501.
[32]  Ghosh M, Fahey JV, Shen Z, Lahey T, Cu-Uvin S, et al. (2010) Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies. PLoS One 5: e11366.
[33]  John M, Keller MJ, Fam EH, Cheshenko N, Hogarty K, et al. (2005) Cervicovaginal secretions contribute to innate resistance to herpes simplex virus infection. J Infect Dis 192: 1731–1740.
[34]  Abdool Karim SS, Richardson BA, Ramjee G, Hoffman IF, Chirenje ZM, et al. (2011) Safety and effectiveness of BufferGel and 0.5% PRO2000 gel for the prevention of HIV infection in women. AIDS 25: 957–966.
[35]  McCormack S, Ramjee G, Kamali A, Rees H, Crook AM, et al. (2010) PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet 376: 1329–1337.
[36]  Kashuba AD, Abdool Karim SS, Kraft E, White N, Sibeko S, et al. (2010) Do systemic and genital tract tenofovir concentrations predict HIV seroconversion in the CAPRISA 004 tenofovir gel trial? Abstract TUSS0503. XVIII International AIDS Conference. Vienna.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133