全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

A Phylometagenomic Exploration of Oceanic Alphaproteobacteria Reveals Mitochondrial Relatives Unrelated to the SAR11 Clade

DOI: 10.1371/journal.pone.0024457

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background According to the endosymbiont hypothesis, the mitochondrial system for aerobic respiration was derived from an ancestral Alphaproteobacterium. Phylogenetic studies indicate that the mitochondrial ancestor is most closely related to the Rickettsiales. Recently, it was suggested that Candidatus Pelagibacter ubique, a member of the SAR11 clade that is highly abundant in the oceans, is a sister taxon to the mitochondrial-Rickettsiales clade. The availability of ocean metagenome data substantially increases the sampling of Alphaproteobacteria inhabiting the oxygen-containing waters of the oceans that likely resemble the originating environment of mitochondria. Methodology/Principal Findings We present a phylogenetic study of the origin of mitochondria that incorporates metagenome data from the Global Ocean Sampling (GOS) expedition. We identify mitochondrially related sequences in the GOS dataset that represent a rare group of Alphaproteobacteria, designated OMAC (Oceanic Mitochondria Affiliated Clade) as the closest free-living relatives to mitochondria in the oceans. In addition, our analyses reject the hypothesis that the mitochondrial system for aerobic respiration is affiliated with that of the SAR11 clade. Conclusions/Significance Our results allude to the existence of an alphaproteobacterial clade in the oxygen-rich surface waters of the oceans that represents the closest free-living relative to mitochondria identified thus far. In addition, our findings underscore the importance of expanding the taxonomic diversity in phylogenetic analyses beyond that represented by cultivated bacteria to study the origin of mitochondria.

References

[1]  Canfield DE (2006) Biochemistry: gas with an ancient history. Nature 440: 426–427.
[2]  Kump LR (2008) The rise of atmospheric oxygen. Nature 451: 277–278.
[3]  Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283: 1476–1481.
[4]  Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci U S A 82: 4443–4447.
[5]  Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG (2004) Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci U S A 101: 9722–9727.
[6]  Gabaldon T, Huynen MA (2003) Reconstruction of the proto-mitochondrial metabolism. Science 301: 609.
[7]  Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326: 332–333.
[8]  Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440: 623–630.
[9]  Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41.
[10]  Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.
[11]  Gross J, Bhattacharya D (2010) Uniting sex and eukaryote origins in an emerging oxygenic world. Biol Direct 5: 53.
[12]  Kurland CG, Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64: 786–820.
[13]  Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, et al. (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21: 1643–1660.
[14]  Fitzpatrick DA, Creevey CJ, McInerney JO (2006) Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol Biol Evol 23: 74–85.
[15]  Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the alphaproteobacteria. J Bacteriol 189: 4578–4586.
[16]  Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG (2007) Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 23: 511–520.
[17]  Beier CL, Horn M, Michel R, Schweikert M, Gortz HD, et al. (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68: 6043–6050.
[18]  Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, et al. (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242–1245.
[19]  Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: e77.
[20]  Biers EJ, Sun S, Howard EC (2009) Prokaryotic Genomes and Diversity in the Surface Ocean: Interrogating the Global Ocean Sampling Metagenome. Appl Environ Microbiol 75: 2221–2229.
[21]  Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, et al. (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387: 493–497.
[22]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
[23]  Belfiore NM, Liu L, Moritz C (2008) Multilocus phylogenetics of a rapid radiation in the genus Thomomys (Rodentia: Geomyidae). Syst Biol 57: 294–310.
[24]  Foster PG (2004) Modeling compositional heterogeneity. Syst Biol 53: 485–495.
[25]  Foster PG, Hickey DA (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48: 284–290.
[26]  Galtier N, Gouy M (1995) Inferring phylogenies from DNA sequences of unequal base compositions. Proc Natl Acad Sci U S A 92: 11317–11321.
[27]  Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56: 17–24.
[28]  Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci U S A 91: 1455–1459.
[29]  Lartillot N, Brinkmann H, Philippe H (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 7: Suppl 1S4.
[30]  Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21: 1095–1109.
[31]  Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AW (1992) Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34: 153–162.
[32]  Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11: 605–612.
[33]  Mooers AO, Holmes EC (2000) The evolution of base composition and phylogenetic inference. Trends Ecol Evol 15: 365–369.
[34]  Yang Z, Roberts D (1995) On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol Biol Evol 12: 451–458.
[35]  Stingl U, Tripp HJ, Giovannoni SJ (2007) Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J 1: 361–371.
[36]  Not F, del Campo J, Balague V, de Vargas C, Massana R (2009) New insights into the diversity of marine picoeukaryotes. PLoS One 4: e7143.
[37]  Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, et al. (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462: 1056–1060.
[38]  Viklund J, Ettema TJ, Andersson SG (2011) Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol Biol Evol. in press.
[39]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[40]  von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, et al. (2007) STRING 7–recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35: D358–362.
[41]  Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: a community resource for metagenomics. PLoS Biol 5: e75.
[42]  Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61: 1–10.
[43]  Steel M (2005) Phylogenetic diversity and the greedy algorithm. Syst Biol 54: 527–529.
[44]  Wallberg A (2007) MrTwig - Phylogenetic diversity in trees and areas. Pre-release version ed.
[45]  Lassmann T, Sonnhammer EL (2006) Kalign, Kalignvu and Mumsa: web servers for multiple sequence alignment. Nucleic Acids Res 34: W596–599.
[46]  Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577.
[47]  Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73.
[48]  Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133