Stimulation of CD40 or Toll-Like Receptors (TLR) has potential for tumor immunotherapy. Combinations of CD40 and TLR stimulation can be synergistic, resulting in even stronger dendritic cell (DC) and CD8+ T cell responses. To evaluate such combinations, established B16F10 melanoma tumors were injected every other day X 5 with plasmid DNA encoding a multimeric, soluble form of CD40L (pSP-D-CD40L) either alone or combined with an agonist for TLR1/2 (Pam3CSK4 ), TLR2/6 (FSL-1 and MALP2), TLR3 (polyinosinic-polycytidylic acid, poly(I:C)), TLR4 ( monophosphoryl lipid A, MPL), TLR7 (imiquimod), or TLR9 (Class B CpG phosphorothioate oligodeoxynucleotide, CpG). When used by itself, pSP-D-CD40L slowed tumor growth and prolonged survival, but did not lead to cure. Of the TLR agonists, CpG and poly(I:C) also slowed tumor growth, and the combination of these two TLR agonists was more effective than either agent alone. The triple combination of intratumoral pSP-D-CD40L + CpG + poly(I:C) markedly slowed tumor growth and prolonged survival. This treatment was associated with a reduction in intratumoral CD11c+ dendritic cells and an influx of CD8+ T cells. Since intratumoral injection of plasmid DNA does not lead to efficient transgene expression, pSP-D-CD40L was also tested with cationic polymers that form DNA-containing nanoparticles which lead to enhanced intratumoral gene expression. Intratumoral injections of pSP-D-CD40L-containing nanoparticles formed from polyethylenimine (PEI) or C32 (a novel biodegradable poly(B-amino esters) polymer) in combination with CpG + poly(I:C) had dramatic antitumor effects and frequently cured mice of B16F10 tumors. These data confirm and extend previous reports that CD40 and TLR agonists are synergistic and demonstrate that this combination of immunostimulants can significantly suppress tumor growth in mice. In addition, the enhanced effectiveness of nanoparticle formulations of DNA encoding immunostimulatory molecules such as multimeric, soluble CD40L supports the further study of this technology for tumor immunotherapy.
References
[1]
Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, et al. (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100: 8372–8377.
[2]
Currie AJ, van der Most RG, Broomfield SA, Prosser AC, Tovey MG, et al. (2008) Targeting the effector site with IFN-alphabeta-inducing TLR ligands reactivates tumor-resident CD8 T cell responses to eradicate established solid tumors. J Immunol 180: 1535–1544.
[3]
Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20: 709–760.
[4]
Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, et al. (2002) Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196: 541–549.
[5]
Yang Y, Huang CT, Huang X, Pardoll DM (2004) Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5: 508–515.
[6]
Powell AM, Russell-Jones R, Barlow RJ (2004) Topical imiquimod immunotherapy in the management of lentigo maligna. Clin Exp Dermatol 29: 15–21.
[7]
McCutcheon B, White K, Kotwall C, Germolic D, Rebolloso Y, et al. (2005) A preliminary study of imiquimod treatment in variants of basal cell carcinoma. Am Surg 71: 662–665.
[8]
Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, et al. (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25: 876–883.
[9]
French RR, Chan HT, Tutt AL, Glennie MJ (1999) CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 5: 548–553.
[10]
Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, et al. (1999) Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5: 780–787.
[11]
Turner JG, Rakhmilevich AL, Burdelya L, Neal Z, Imboden M, et al. (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166: 89–94.
[12]
van Mierlo GJ, den Boer AT, Medema JP, van der Voort EI, Fransen MF, et al. (2002) CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci U S A 99: 5561–5566.
[13]
Ahonen CL, Doxsee CL, McGurran SM, Riter TR, Wade WF, et al. (2004) Combined TLR and CD40 Triggering Induces Potent CD8+ T Cell Expansion with Variable Dependence on Type I IFN. J Exp Med 199: 775–784.
[14]
Liu K, Idoyaga J, Charalambous A, Fujii S, Bonito A, et al. (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202: 1507–1516.
[15]
Broomfield SA, van der Most RG, Prosser AC, Mahendran S, Tovey MG, et al. (2009) Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J Immunol 182: 5217–5224.
[16]
Scarlett UK, Cubillos-Ruiz JR, Nesbeth YC, Martinez DG, Engle X, et al. (2009) In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res 69: 7329–7337.
[17]
Barr TA, McCormick AL, Carlring J, Heath AW (2003) A potent adjuvant effect of CD40 antibody attached to antigen. Immunology 109: 87–92.
[18]
Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, et al. (2001) Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 19: 3280–3287.
Kikuchi T, Miyazawa N, Moore MA, Crystal RG (2000) Tumor regression induced by intratumor administration of adenovirus vector expressing CD40 ligand and naive dendritic cells. Cancer Res 60: 6391–6395.
[21]
Zhang L, Tang Y, Akbulut H, Zelterman D, Linton PJ, et al. (2003) An adenoviral vector cancer vaccine that delivers a tumor-associated antigen/CD40-ligand fusion protein to dendritic cells. Proc Natl Acad Sci U S A 100: 15101–15106.
[22]
Xiang R, Primus FJ, Ruehlmann JM, Niethammer AG, Silletti S, et al. (2001) A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J Immunol 167: 4560–4565.
[23]
Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12: 33–42.
[24]
Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4: 941–952.
[25]
Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, et al. (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202: 919–929.
[26]
Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6: 769–776.
[27]
Zheng R, Cohen PA, Paustian CA, Johnson TD, Lee WT, et al. (2008) Paired Toll-like receptor agonists enhance vaccine therapy through induction of interleukin-12. Cancer Res 68: 4045–4049.
[28]
Wells JW, Cowled CJ, Farzaneh F, Noble A (2008) Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol 181: 3422–3431.
[29]
Stone GW, Barzee S, Snarsky V, Kee K, Spina CA, et al. (2006) Multimeric soluble CD40 ligand and GITR ligand as adjuvants for human immunodeficiency virus DNA vaccines. J Virol 80: 1762–1772.
[30]
Stone GW, Barzee S, Snarsky V, Spina CA, Lifson JD, et al. (2006) Macaque multimeric soluble CD40 ligand and GITR ligand constructs are immunostimulatory molecules in vitro. Clin Vaccine Immunol 13: 1223–1230.
[31]
Finkelstein SE, Heimann DM, Klebanoff CA, Antony PA, Gattinoni L, et al. (2004) Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. J Leukoc Biol 76: 333–337.
[32]
Kornbluth RS, Kee K, Richman DD (1998) CD40 ligand (CD154) stimulation of macrophages to produce HIV-1-suppressive beta-chemokines. Proc Natl Acad Sci U S A 95: 5205–5210.
[33]
Cotten M, Baker A, Saltik M, Wagner E, Buschle M (1994) Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther 1: 239–246.
[34]
Anderson DG, Peng W, Akinc A, Hossain N, Kohn A, et al. (2004) A polymer library approach to suicide gene therapy for cancer. Proc Natl Acad Sci U S A 101: 16028–16033.
[35]
Thomsen LL, Topley P, Daly MG, Brett SJ, Tite JP (2004) Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine 22: 1799–1809.
[36]
Roman M, Martin-Orozco E, Goodman JS, Nguyen MD, Sato Y, et al. (1997) Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 3: 849–854.
[37]
Fidler IJ, Nicolson GL (1976) Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57: 1199–1202.
[38]
de Goer de Herve MG, Durali D, Tran TA, Maigne G, Simonetta F, et al. (2005) Differential effect of agonistic anti-CD40 on human mature and immature dendritic cells: the Janus face of anti-CD40. Blood 106: 2806–2814.
[39]
Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C (2001) Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 61: 1095–1099.
[40]
McWilliams JA, McGurran SM, Dow SW, Slansky JE, Kedl RM (2006) A modified tyrosinase-related protein 2 epitope generates high-affinity tumor-specific T cells but does not mediate therapeutic efficacy in an intradermal tumor model. J Immunol 177: 155–161.
[41]
Riddell SR, Elliott M, Lewinsohn DA, Gilbert MJ, Wilson L, et al. (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 2: 216–223.
[42]
Gambotto A, Dworacki G, Cicinnati V, Kenniston T, Steitz J, et al. (2000) Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-Kd-restricted CTL epitope. Gene Ther 7: 2036–2040.
[43]
van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190: 355–366.
[44]
Fidler IJ (1975) Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35: 218–224.
[45]
Haswell LE, Glennie MJ, Al-Shamkhani A (2001) Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur J Immunol 31: 3094–3100.
[46]
Kornbluth RS (2002) An expanding role for CD40L and other tumor necrosis factor superfamily ligands in HIV infection. J Hematother Stem Cell Res 11: 787–801.
[47]
Morris AE, Remmele RL Jr, Klinke R, Macduff BM, Fanslow WC, et al. (1999) Incorporation of an isoleucine zipper motif enhances the biological activity of soluble CD40L (CD154). J Biol Chem 274: 418–423.
[48]
Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, et al. (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23: 1428–1440.
[49]
Walsh P, Gonzalez R, Dow S, Elmslie R, Potter T, et al. (2000) A phase I study using direct combination DNA injections for the immunotherapy of metastatic melanoma. University of Colorado Cancer Center Clinical Trial. Hum Gene Ther 11: 1355–1368.
[50]
Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, et al. (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202: 1131–1139.
[51]
Toso JF, Lapointe R, Hwu P (2002) CD40 ligand and lipopolysaccharide enhance the in vitro generation of melanoma-reactive T-cells. J Immunol Methods 259: 181–190.
[52]
Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, et al. (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31: 3026–3037.
[53]
Schulz O, Edwards AD, Schito M, Aliberti J, Manickasingham S, et al. (2000) CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13: 453–462.
[54]
Lapteva N, Seethammagari MR, Hanks BA, Jiang J, Levitt JM, et al. (2007) Enhanced activation of human dendritic cells by inducible CD40 and Toll-like receptor-4 ligation. Cancer Res 67: 10528–10537.
[55]
Welters MJ, Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, et al. (2007) Multiple CD4 and CD8 T-cell activation parameters predict vaccine efficacy in vivo mediated by individual DC-activating agonists. Vaccine 25: 1379–1389.
[56]
Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, et al. (2003) Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol 4: 1223–1229.
[57]
Stone GW, Barzee S, Snarsky V, Santucci C, Tran B, et al. (2009) Regression of established AB1 murine mesothelioma induced by peritumoral injections of CpG oligodeoxynucleotide either alone or in combination with poly(I:C) and CD40 ligand plasmid DNA. J Thorac Oncol 4: 802–808.
[58]
Moodycliffe AM, Shreedhar V, Ullrich SE, Walterscheid J, Bucana C, et al. (2000) CD40-CD40 ligand interactions in vivo regulate migration of antigen-bearing dendritic cells from the skin to draining lymph nodes. J Exp Med 191: 2011–2020.
[59]
Buhtoiarov IN, Sondel PM, Eickhoff JC, Rakhmilevich AL (2007) Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology 120: 412–423.
[60]
Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92: 7297–7301.
[61]
Thomas M, Klibanov AM (2002) Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A 99: 14640–14645.
[62]
Hanks BA, Jiang J, Singh RA, Song W, Barry M, et al. (2005) Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat Med 11: 130–137.
[63]
Perona-Wright G, Jenkins SJ, O'Connor RA, Zienkiewicz D, McSorley HJ, et al. (2009) A pivotal role for CD40-mediated IL-6 production by dendritic cells during IL-17 induction in vivo. J Immunol 182: 2808–2815.
[64]
Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, et al. (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112: 362–373.
[65]
Fuse S, Tsai CY, Molloy MJ, Allie SR, Zhang W, et al. (2009) Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1. J Immunol 182: 4244–4254.
[66]
Edwards AD, Manickasingham SP, Sporri R, Diebold SS, Schulz O, et al. (2002) Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J Immunol 169: 3652–3660.
[67]
Ahonen CL, Wasiuk A, Fuse S, Turk MJ, Ernstoff MS, et al. (2008) Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood 111: 3116–3125.
[68]
Zhu Q, Egelston C, Vivekanandhan A, Uematsu S, Akira S, et al. (2008) Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc Natl Acad Sci U S A 105: 16260–16265.
[69]
Marzo AL, Lake RA, Lo D, Sherman L, McWilliam A, et al. (1999) Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol 162: 5838–5845.
[70]
Hiura T, Kagamu H, Miura S, Ishida A, Tanaka H, et al. (2005) Both Regulatory T Cells and Antitumor Effector T Cells Are Primed in the Same Draining Lymph Nodes during Tumor Progression. J Immunol 175: 5058–5066.
[71]
Stumbles PA, Himbeck R, Frelinger JA, Collins EJ, Lake RA, et al. (2004) Cutting edge: tumor-specific CTL are constitutively cross-armed in draining lymph nodes and transiently disseminate to mediate tumor regression following systemic CD40 activation. J Immunol 173: 5923–5928.
[72]
van Mierlo GJ, Boonman ZF, Dumortier HM, den Boer AT, Fransen MF, et al. (2004) Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol 173: 6753–6759.
[73]
Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65: 3437–3446.
[74]
Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, et al. (2004) Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res 64: 5850–5860.
[75]
Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, et al. (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194: 863–869.
[76]
Gerosa F, Gobbi A, Zorzi P, Burg S, Briere F, et al. (2005) The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 174: 727–734.
[77]
Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, et al. (2005) A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 201: 1435–1446.
[78]
Levy HB, Law LW, Rabson AS (1969) Inhibition of tumor growth by polyinosinic-polycytidylic acid. Proc Natl Acad Sci U S A 62: 357–361.
[79]
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105.
[80]
Cubillos-Ruiz JR, Engle X, Scarlett UK, Martinez D, Barber A, et al. (2009) Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 119: 2231–2244.
[81]
Greenland JR, Liu H, Berry D, Anderson DG, Kim WK, et al. (2005) Beta-amino ester polymers facilitate in vivo DNA transfection and adjuvant plasmid DNA immunization. Mol Ther 12: 164–170.
[82]
Sharp FA, Ruane D, Claass B, Creagh E, Harris J, et al. (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A 106: 870–875.
[83]
Guarda G, Dostert C, Staehli F, Cabalzar K, Castillo R, et al. (2009) T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature.
[84]
Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J (2003) Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 9: 1837–1849.
[85]
Meunier MC, Delisle JS, Bergeron J, Rineau V, Baron C, et al. (2005) T cells targeted against a single minor histocompatibility antigen can cure solid tumors. Nat Med 11: 1222–1229.
[86]
Okano F, Merad M, Furumoto K, Engleman EG (2005) In vivo manipulation of dendritic cells overcomes tolerance to unmodified tumor-associated self antigens and induces potent antitumor immunity. J Immunol 174: 2645–2652.
[87]
Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van Hall T, et al. (2000) Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 60: 6995–7001.
[88]
Sparwasser T, Hultner L, Koch ES, Luz A, Lipford GB, et al. (1999) Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J Immunol 162: 2368–2374.
[89]
Kochenderfer JN, Gress RE (2007) A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp Biol Med (Maywood) 232: 1130–1141.
[90]
Tamada K, Chen L (2006) Renewed interest in cancer immunotherapy with the tumor necrosis factor superfamily molecules. Cancer Immunol Immunother 55: 355–362.