Background Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients. Methodology/Principal Findings Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1) and one multidrug resistant (MDR) isolate (K-2) of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan). Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. Conclusions Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard genotyping tools if the overall diversity of circulating clones is limited. These findings have important implications for clinical trials of new anti-tuberculosis drugs.
References
[1]
Farmer PE, Nizeye B, Stulac S, Keshavjee S (2006) Structural violence and clinical medicine. PLoS Med 3: e449.
[2]
Keshavjee S, Gelmanova IY, Pasechnikov AD, Mishustin SP, Andreev YG, et al. (2008) Treating multidrug-resistant tuberculosis in Tomsk, Russia: developing programs that address the linkage between poverty and disease. Ann N Y Acad Sci 1136: 1–11.
[3]
World Health Organization (2007) WHO Report 2007: Global Tuberculosis Control - Surveillance, Planning, Financing. Geneva: World Health Organization.
[4]
World Health Organization (2008) Anti-Tuberculosis Drug Resistance In the World. Report Number 4. Geneva: World Health Organization.
[5]
Cox HS, Orozco JD, Male R, Ruesch-Gerdes S, Falzon D, et al. (2004) Multidrug-resistant tuberculosis in central Asia. Emerg Infect Dis 10: 865–872.
[6]
Hill AV (2006) Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 40: 469–486.
[7]
Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, et al. (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4: e1000160.
[8]
Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, et al. (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103: 2869–2873.
[9]
Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7: 328–337.
[10]
Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, et al. (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6: e311.
[11]
Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, et al. (2008) The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4: e1000034.
[12]
de Jong BC, Hill PC, Aiken A, Awine T, Antonio M, et al. (2008) Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198: 1037–1043.
[13]
Thwaites G, Caws M, Chau TT, D'Sa A, Lan NT, et al. (2008) Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of pulmonary and meningeal tuberculosis. J Clin Microbiol 46: 1363–1368.
[14]
Cox HS, Kubica T, Doshetov D, Kebede Y, Rusch-Gerdess S, et al. (2005) The Beijing genotype and drug resistant tuberculosis in the Aral Sea region of Central Asia. Respir Res 6: 134.
[15]
Reed MB, Domenech P, Manca C, Su H, Barczak AK, et al. (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431: 84–87.
[16]
Cowley D, Govender D, February B, Wolfe M, Steyn L, et al. (2008) Recent and rapid emergence of W-Beijing strains of Mycobacterium tuberculosis in Cape Town, South Africa. Clin Infect Dis 47: 1252–1259.
[17]
Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8: 843–849.
[18]
Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, et al. (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312: 1944–1946.
[19]
Maisnier-Patin S, Andersson D (2004) Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol 155: 360–369.
[20]
Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62: 53–70.
[21]
Garnier T, Eiglmeier K, Camus J, Medina N, Mansoor H, et al. (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100: 7877–7882.
[22]
Van Soolingen D, Kremer K, Vynycky E (2003) New perspectives in the molecular epidemiology of tuberculosis. In: Kaufmann S, Hahn H, editors. Mycobacteria and TB. Berlin: Karger. pp. 17–45.
[23]
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.
[24]
Cole ST, Barrell BG (1998) Analysis of the genome of Mycobacterium tuberculosis H37Rv. Novartis Found Symp 217: 160–172; discussion 172–167.
Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, et al. (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4: e33.
[27]
Lee JS, Krause R, Schreiber J, Mollenkopf HJ, Kowall J, et al. (2008) Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host Microbe 3: 97–103.
[28]
Zheng H, Lu L, Wang B, Pu S, Zhang X, et al. (2008) Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3: e2375.
[29]
Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, et al. (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184: 5479–5490.
[30]
Zhang Y, Jacobs WRJ (2008) Mechanisms of drug action, drug resistance and drug tolerance in Mycobacterium tuberculosis: Expected phenotypes from evolutionary pressures from a highly successful pathogen. In: Kaufmann SH, Rubin E, editors. Handbook of tuberculosis. Weinheim: Wiley-VCH Verlag.
[31]
Sreevatsan S, Pan X, Stockbauer K, Connell N, Kreiswirth B, et al. (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94: 9869–9874.
[32]
Musser J, Amin A, Ramaswamy S (2000) Negligible genetic diversity of mycobacterium tuberculosis host immune system protein targets: evidence of limited selective pressure. Genetics 155: 7–16.
[33]
Pardini M, Niemann S, Varaine F, Iona E, Meacci F, et al. (2009) Characteristics of drug-resistant tuberculosis in Abkhazia (Georgia), a high-prevalence area in Eastern Europe. Tuberculosis (Edinb) 89: 317–324.
[34]
Cox H, Sibilia K, Feuerriegel S, Kalon S, Polonsky J, et al. (2008) Emergence of extensive drug resistance during treatment for multidrug-resistant tuberculosis. N Engl J Med 359: 2398–2400.
[35]
Shah NS, Wright A, Bai GH, Barrera L, Boulahbal F, et al. (2007) Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 13: 380–387.
[36]
Zignol M, Hosseini MS, Wright A, Weezenbeek CL, Nunn P, et al. (2006) Global incidence of multidrug-resistant tuberculosis. J Infect Dis 194: 479–485.
[37]
Jassal M, Bishai W (2009) Extensively drug-resistant tuberculosis. Lancet Infect Dis 9: 19–30.
[38]
Koenig R (2007) Tuberculosis. Few mutations divide some drug-resistant TB strains. Science 318: 901–902.
[39]
Service RF (2006) Gene sequencing. The race for the ? 1000 genome. Science 311: 1544–1546.
[40]
van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, et al. (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31: 406–409.
[41]
Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907–914.
[42]
Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, et al. (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44: 4498–4510.
[43]
Oelemann MC, Diel R, Vatin V, Haas W, Rusch-Gerdes S, et al. (2007) Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis. J Clin Microbiol 45: 691–697.
[44]
Pfyffer GE, Palicova F, Rusch-Gerdes S (2002) Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide with the nonradiometric BACTEC MGIT 960 system. J Clin Microbiol 40: 1670–1674.
[45]
Bemer P, Palicova F, Rusch-Gerdes S, Drugeon HB, Pfyffer GE (2002) Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 40: 150–154.
[46]
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119–120.
[47]
Cole ST (1999) Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett 452: 7–10.
[48]
Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591–593.
[49]
Abe C, Kobayashi I, Mitarai S, Wada M, Kawabe Y, et al. (2008) Biological and molecular characteristics of Mycobacterium tuberculosis clinical isolates with low-level resistance to isoniazid in Japan. J Clin Microbiol 46: 2263–2268.
[50]
Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, et al. (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341: 647–650.
[51]
Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, et al. (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3: 567–570.
[52]
Ramaswamy SV, Amin AG, Goksel S, Stager CE, Dou SJ, et al. (2000) Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44: 326–336.
[53]
Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2: 662–667.
[54]
Lee KW, Lee JM, Jung KS (2001) Characterization of pncA mutations of pyrazinamide-resistant Mycobacterium tuberculosis in Korea. J Korean Med Sci 16: 537–543.
[55]
Chan RC, Hui M, Chan EW, Au TK, Chin ML, et al. (2007) Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother 59: 866–873.
[56]
Nair J, Rouse D, Bai G, Morris S (1993) The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol 10: 521–527.
[57]
Tsolaki AG, Gagneux S, Pym AS, Goguet de la Salmoniere YO, Kreiswirth BN, et al. (2005) Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 43: 3185–3191.