Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX), and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.
References
[1]
Cash RA, Music SI, Libonati JP, Snyder MJ, Wenzel RP, et al. (1974) Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J Infect Dis 129: 45–52.
[2]
Chiang SL, Mekalanos JJ (1999) rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 67: 976–980.
[3]
Hsiao A, Liu Z, Joelsson A, Zhu J (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci USA 103: 14542–14547.
[4]
Kirn TJ, Lafferty MJ, Sandoe CM, Taylor RK (2000) Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol Microbiol 35: 896–910.
[5]
Olivier V, Salzman NH, Satchell KJ (2007) Prolonged colonization of mice by Vibrio cholerae El Tor O1 depends on accessory toxins. Infect Immun 75: 5043–5051.
[6]
Olivier V, Haines GK, 3rd, Tan Y, Satchell KJ (2007) Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun 75: 5035–5042.
[7]
Fullner KJ, Boucher JC, Hanes MA, Haines GK, 3rd, Meehan BM, et al. (2002) The contribution of accessory toxins of Vibrio cholerae O1 El Tor to the proinflammatory response in a murine pulmonary cholera model. J Exp Med 195: 1455–1462.
[8]
Fullner KJ, Mekalanos JJ (1999) Genetic characterization of a new type IV pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect Immun 67: 1393–1404.
[9]
Freye E, Knufermann V (1994) [No inhibition of intestinal motility following ketamine-midazolam anesthesia. A comparison of anesthesia with enflurane and fentanyl/midazolam]. Anaesthesist 43: 87–91.
[10]
Herbert J (1998) Neurosteroids, brain damage, and mental illness. Exp Gerontol 33: 713–727.
[11]
Suliburk JW, Gonzalez EA, Moore-Olufemi SD, Weisbrodt N, Moore FA, et al. (2005) Ketamine inhibits lipopolysacharide (LPS) induced gastric luminal fluid accumulation. J Surg Res 127: 203–207.
[12]
Helmer KS, Cui Y, Chang L, Dewan A, Mercer DW (2003) Effects of ketamine/xylazine on expression of tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclo-oxygenase-2 in rat gastric mucosa during endotoxemia. Shock 20: 63–69.
[13]
Helmer KS, Cui Y, Dewan A, Mercer DW (2003) Ketamine/xylazine attenuates LPS-induced iNOS expression in various rat tissues. J Surg Res 112: 70–78.
[14]
Knop J, Rowley D (1975) Antibacterial mechanisms in the intestine. Elimination of V. cholerae from the gastrointestinal tract of adult mice. Aust J Exp Biol Med Sci 53: 137–146.
[15]
Nygren E, Li BL, Holmgren J, Attridge SR (2009) Establishment of an adult mouse model for direct evaluation of the efficacy of vaccines against Vibrio cholerae. Infect Immun.
[16]
Alm RA, Stroeher UH, Manning PA (1988) Extracellular proteins of Vibrio cholerae: nucleotide sequence of the structural gene (hlyA) for the haemolysin of the haemolytic El Tor strain O17 and characterization of the hlyA mutation in the non-haemolytic classical strain 569B. Mol Microbiol 2: 481–488.
[17]
Cordero CL, Sozhamannan S, Satchell KJ (2007) RTX toxin actin cross-linking activity in clinical and environmental isolates of Vibrio cholerae. J Clin Microbiol 45: 2289–2292.
[18]
Hanne LF, Finkelstein RA (1982) Characterization and distribution of the hemagglutinins produced by Vibrio cholerae. Infect Immun 36: 209–214.
[19]
Fullner KJ, Mekalanos JJ (2000) In vivo covalent crosslinking of actin by the RTX toxin of Vibrio cholerae. EMBO J 19: 5315–5323.
[20]
Valeva A, Walev I, Weis S, Boukhallouk F, Wassenaar TM, et al. (2007) Pro-inflammatory feedback activation cycle evoked by attack of Vibrio cholerae cytolysin on human neutrophil granulocytes. Med Microbiol Immunol 197: 285–293.
[21]
Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363: 223–233.
[22]
Niyogi SG, Deb BC, Sircar BK, Sengupta PG, De SP, et al. (1979) Studies on cholera carriers and their role in transmission of the infection: a preliminary report. Indian J Med Res 70: 892–897.
[23]
Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35: 252–263.
[24]
Ghosh A, Saha DR, Hoque KM, Asakuna M, Yamasaki S, et al. (2006) Enterotoxigenicity of mature 45-kilodalton and processed 35-kilodalton forms of hemagglutinin protease purified from a cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain. Infect Immun 74: 2937–2946.
[25]
Li M, Shimada T, Morris JG Jr, Sulakvelidze A, Sozhamannan S (2002) Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect Immun 70: 2441–2453.
[26]
Waldor MK, Mekalanos JJ (1994) ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun 62: 72–78.
[27]
Bina J, Zhu J, Dziejman M, Faruque S, Calderwood S, et al. (2003) ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci USA 100: 2801–2806.
[28]
Goldberg I, Mekalanos JJ (1986) Cloning of the Vibrio cholerae recA gene and construction of a Vibrio cholerae recA mutant. J Bacteriol 165: 715–722.