全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Insights into the Molecular Basis of L-Form Formation and Survival in Escherichia coli

DOI: 10.1371/journal.pone.0007316

Full-Text   Cite this paper   Add to My Lib

Abstract:

L-forms have been shown to occur among many species of bacteria and are suspected to be involved in persistent infections. Since their discovery in 1935, numerous studies characterizing L-form morphology, growth, and pathogenic potential have been conducted. However, the molecular mechanisms underlying the formation and survival of L-forms remain unknown. Using unstable L-form colonies of Escherichia coli as a model, we performed genome-wide transcriptome analysis and screened a deletion mutant library to study the molecular mechanisms involved in formation and survival of L-forms. Microarray analysis of L-form versus classical colonies revealed many up-regulated genes of unknown function as well as multiple over-expressed stress pathways shared in common with persister cells and biofilms. Mutant screens identified three groups of mutants which displayed varying degrees of defects in L-form colony formation. Group 1 mutants, which showed the strongest defect in L-form colony formation, belonged to pathways involved in cell envelope stress, DNA repair, iron homeostasis, outer membrane biogenesis, and drug efflux/ABC transporters. Four (Group 1) mutants, rcsB, a positive response regulator of colanic acid capsule synthesis, ruvA, a recombinational junction binding protein, fur, a ferric uptake regulator and smpA a small membrane lipoprotein were selected for complementation. Complementation of the mutants using a high-copy overexpression vector failed, while utilization of a low-copy inducible vector successfully restored L-form formation. This work represents the first systematic genetic evaluation of genes and pathways involved in the formation and survival of unstable L-form bacteria. Our findings provide new insights into the molecular mechanisms underlying L-form formation and survival and have implications for understanding the emergence of antibiotic resistance, bacterial persistence and latent infections and designing novel drugs and vaccines.

References

[1]  Dienes L (1947) The morphology of the L1 of Klieneberger and its relationship to Streptobacillus moniliformis. J Bacteriol 54: 231–237.
[2]  Dienes L, Weinberger HJ (1951) The L forms of bacteria. Bacteriol Rev 15: 245–288.
[3]  Lederberg J (1956) Bacterial protoplasts induced by penicillin. Proc Natl Acad Sci U S A 42: 574–577.
[4]  Domingue GJ, Woody H (1997) Bacterial persistence and expression of disease. Clin Microbiol Rev 10: 320–344.
[5]  Allan EJ, Hoischen C, Gumpert J (2009) Chapter 1, Bacterial L-Forms. In: Laskin AllenI., Sariaslani Sima, Gadd GeoffreyM., editors. Advances in Applied Microbiology. New York: Academic Press. pp. 1–39.
[6]  Clasener H (1972) Pathogenicity of the L-phase of bacteria. Annu Rev Microbiol 26: 55–84.
[7]  Klieneberger E (1935) The natural occurrence of pleuropneumonia-like organism in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J Pathol Bacteriol 40: 93–105.
[8]  Gutman LT, Turck M, Petersdorf RG, Wedgwood RJ (1965) Significance of bacterial variants in urine of patients with chronic bacteriuria. J Clin Invest 44: 1945–1952.
[9]  Mattman LH (2001) Cell wall deficient forms. New York: CRC Press. 416 p.
[10]  Owens WE (1987) Isolation of Staphylococcus aureus L forms from experimentally induced bovine mastitis. J Clin Microbiol 25: 1956–1961.
[11]  Schmidtke LM, Carson J (1999) Induction, characterisation and pathogenicity in rainbow trout Oncorhynchus mykiss (walbaum) of Lactococcus garvieae L-forms. Vet Microbiol 69: 287–300.
[12]  Fuller E, Elmer C, Nattress F, Ellis R, Horne G, et al. (2005) Beta-lactam resistance in Staphylococcus aureus cells that do not require a cell wall for integrity. Antimicrob Agents Chemother 49: 5075–5080.
[13]  Siddiqui RA, Hoischen C, Holst O, Heinze I, Schlott B, et al. (2006) The analysis of cell division and cell wall synthesis genes reveals mutationally inactivated ftsQ and mraY in a protoplast-type L-form of Escherichia coli. FEMS Microbiol Lett 258: 305–311.
[14]  Joseleau-Petit D, Liebart JC, Ayala JA, D'Ari R (2007) Unstable Escherichia coli L forms revisited: Growth requires peptidoglycan synthesis. J Bacteriol 189: 6512–6520.
[15]  Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in bacillus subtilis. Nature 457: 849–853.
[16]  Dell'Era S, Buchrieser C, Couve E, Schnell B, Briers Y, et al. (2009) Listeria monocytogenes L-forms respond to cell wall deficiency by modifying gene expression and the mode of division. Mol Microbiol 73: 306–322.
[17]  LEDERBERG J, ST CLAIR J (1958) Protoplasts and L-type growth of Escherichia coli. J Bacteriol 75: 143–160.
[18]  Huber TW, Brinkley AW (1977) Growth of cell wall-defective variants of Escherichia coli: Comparison of aerobic and anaerobic induction frequencies. J Clin Microbiol 6: 166–171.
[19]  Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, et al. (2004) Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 5: R80.
[20]  Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186: 8172–8180.
[21]  Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, et al. (2006) Persisters: A distinct physiological state of E. coli. BMC Microbiol 6: 53.
[22]  Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, et al. (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51: 659–674.
[23]  Domka J, Lee J, Bansal T, Wood TK (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9: 332–346.
[24]  Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74: 7376–7382.
[25]  Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. J Bacteriol 187: 4774–81.
[26]  Zhang XS, Garcia-Contreras R, Wood TK (2007) YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol 189: 3051–62.
[27]  Francez-Charlot A, Castanie-Cornet MP, Gutierrez C, Cam K (2005) Osmotic regulation of the Escherichia coli bdm (biofilm-dependent modulation) gene by the RcsCDB his-asp phosphorelay. J Bacteriol 187: 3873–3877.
[28]  Tamae C, Liu A, Kim K, Sitz D, Hong J, et al. (2008) Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol 190: 5981–5988.
[29]  Laubacher ME, Ades SE (2008) The rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 190: 2065–2074.
[30]  Majdalani N, Gottesman S (2005) The rcs phosphorelay: A complex signal transduction system. Annu Rev Microbiol 59: 379–405.
[31]  Boulanger A, Francez-Charlot A, Conter A, Castanie-Cornet MP, Cam K, et al. (2005) Multistress regulation in Escherichia coli: Expression of osmB involves two independent promoters responding either to sigmaS or to the RcsCDB his-asp phosphorelay. J Bacteriol 187: 3282–3286.
[32]  Carballes F, Bertrand C, Bouche JP, Cam K (1999) Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 34: 442–450.
[33]  Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, et al. (2003) RcsCDB his-asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49: 823–832.
[34]  Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797–810.
[35]  Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74: 247–281.
[36]  Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215–237.
[37]  Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, et al. (2004) SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305: 1629–31.
[38]  Grove JI, Harris L, Buckman C, Lloyd RG (2008) DNA double strand break repair and crossing over mediated by RuvABC resolvase and RecG translocase. DNA Repair (Amst) 7: 1517–1530.
[39]  Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, et al. (2007) Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 104: 6400–6405.
[40]  Shingaki R, Kasahara Y, Iwano M, Kuwano M, Takatsuka T, et al. (2003) Induction of L-form-like cell shape change of Bacillus subtilis under microculture conditions. Microbiology 149: 2501–2511.
[41]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57: 289–300.
[42]  Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The keio collection. Mol Syst Biol 2: 2006 0008.
[43]  Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121–4130.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133