全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Tumor-Shed PGE2 Impairs IL2Rγc-Signaling to Inhibit CD4+ T Cell Survival: Regulation by Theaflavins

DOI: 10.1371/journal.pone.0007382

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Many tumors are associated with decreased cellular immunity and elevated levels of prostaglandin E2 (PGE2), a known inhibitor of CD4+ T cell activation and inducer of type-2 cytokine bias. However, the role of this immunomodulator in the survival of T helper cells remained unclear. Since CD4+ T cells play critical roles in cell-mediated immunity, detail knowledge of the effect tumor-derived PGE2 might have on CD4+ T cell survival and the underlying mechanism may, therefore, help to overcome the overall immune deviation in cancer. Methodology/Principal Findings By culturing purified human peripheral CD4+ T cells or Jurkat cells with spent media of theaflavin- or celecoxib-pre-treated MCF-7 cells, we show that tumor-shed PGE2 severely impairs interleukin 2 receptor γc (IL2Rγc)-mediated survival signaling in CD4+ T cells. Indeed, tumor-shed PGE2 down-regulates IL2Rγc expression, reduces phosphorylation as well as activation of Janus kinase 3 (Jak-3)/signal transducer and activator of transcription 5 (Stat-5) and decreases Bcl-2/Bax ratio thereby leading to activation of intrinsic apoptotic pathway. Constitutively active Stat-5A (Stat-5A1*6) over-expression efficiently elevates Bcl-2 levels in CD4+ T cells and protects them from tumor-induced death while dominant-negative Stat-5A over-expression fails to do so, indicating the importance of Stat-5A-signaling in CD4+ T cell survival. Further support towards the involvement of PGE2 comes from the results that (a) purified synthetic PGE2 induces CD4+ T cell apoptosis, and (b) when knocked out by small interfering RNA, cyclooxygenase-2 (Cox-2)-defective tumor cells fail to initiate death. Interestingly, the entire phenomena could be reverted back by theaflavins that restore cytokine-dependent IL2Rγc/Jak-3/Stat-5A signaling in CD4+ T cells thereby protecting them from tumor-shed PGE2-induced apoptosis. Conclusions/Significance These data strongly suggest that tumor-shed PGE2 is an important factor leading to CD4+ T cell apoptosis during cancer and raise the possibility that theaflavins may have the potential as an effective immunorestorer in cancer-bearer.

References

[1]  Phipps RP, Stein SH, Roper RL (1991) A new view of prostaglandin E regulation of the immune response. Immunol Today 12: 349–352.
[2]  Goetzl EJ, An S, Smith WL (1995) Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J 9: 1051–1058.
[3]  Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23: 144–150.
[4]  Passwell J, Levanon M, Davidsohn J, Ramot B (1983) Monocyte PGE2 secretion in Hodgkin's disease and its relation to decreased cellular immunity. Clin Exp Immunol 51: 61–68.
[5]  Cayeux SJ, Beverley PC, Schulz R, Dorken B (1993) Elevated plasma prostaglandin E2 levels found in 14 patients undergoing autologous bone marrow or stem cell transplantation. Bone Marrow Transplant 12: 603–608.
[6]  Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, et al. (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111: 727–735.
[7]  Toes RE, Ossendrop F, Offringa R, Melief CJM (1999) CD4+ T cells and their role in antitumor immune responses. J Exp Med 189: 753–756.
[8]  Pardoll DM, Topalian SL (1998) The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 10: 588–594.
[9]  Goedegebuure PS, Eberlein TJ (1995) The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors. Immunol Res 14: 119–131.
[10]  Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222: 129–144.
[11]  Huang H, Hao S, Li F, Ye Z, Yang J, et al. (2007) CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology 120: 148–159.
[12]  Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, et al. (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478–480.
[13]  Marzo AL, Lake RA, Robinson BW, Scott B (1999) T-cell receptor transgenic analysis of tumor-specific CD8 and CD4 responses in the eradication of solid tumors. Cancer Res 59: 1071–1079.
[14]  Das T, Sa G, Paszkiewicz-Kozik E, Hilston C, Molto L, et al. (2008) Tumors Induce T Cell Apoptosis Through Receptor-Dependent and Receptor-Independent Pathways. J Immunol 180: 4687–4696.
[15]  Das T, Sa G, Hilston C, Kudo D, Rayman P, et al. (2008) GM1 and TNFa, overexpressed in renal cell carcinoma, synergize to induce T cell apoptosis. Cancer Research 68: 2014–2023.
[16]  Sa G, Das T, Moon C, Hilston CM, Rayman PA, et al. (2009) GD3, an Overexpressed Tumor-Derived Ganglioside, Mediates the Apoptosis of Activated but not Resting T Cells. Cancer Res 69: 3095–3104.
[17]  Bhattacharyya S, Mandal D, Sen GS, Pal S, Banerjee S, et al. (2007) Tumor-induced oxidative stress perturbs NFκB activity augmenting TNFα-mediated T cell death: Protection by curcumin. Cancer Research 67: 362–370.
[18]  Mandal D, Bhattacharyya S, Lahiry L, Chattopadhyay S, Sa G, et al. (2007) Black tea-induced decrease in IL-10 and TGF-β of tumor cells promotes Th1/Tc1 response in tumor-bearer. Nutrition Cancer 58: 213–221.
[19]  Finke J, Ferrone S, Frey A, Mufson A, Ochoa A (1999) Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol Today 20: 158–160.
[20]  Bhattacharyya S, Mandal D, Saha B, Sen GS, Das T, et al. (2007) Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J Biol Chem 282: 15954–15964.
[21]  Mandal D, Bhattacharyya A, Lahiry L, Bhattacharyya S, Sa G, et al. (2005) Tumor-induced thymic involution via Inhibition of IL-7Rα and its JAK-STAT signaling pathway: Protection by Black Tea. Int. Immunopharmacol 6: 433–444.
[22]  Chemnitz JM, Driesen J, Classen S, Riley JL, Debey S, et al. (2006) Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: implications in Hodgkin's lymphoma. Cancer Res 66: 1114–1122.
[23]  Pockaj BA, Basu GD, Pathangey LB, Gray RJ, Hernandez JL, et al. (2004) Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11: 328–339.
[24]  Minakuchi R, Wacholtz MC, Davis LS, Lipsky PE (1990) Delineation of the mechanism of inhibition of human T cell activation by PGE2. J Immunol 145: 2616–2625.
[25]  Spierings DC, Lemmens EE, Grewal K, Schoenberger SP, Green DR (2006) Duration of CTL activation regulates IL2 production required for autonomous clonal expansion. Eur J Immunol 36: 1707–1717.
[26]  Kolenko V, Rayman P, Roy B, Cathcart MK, O'Shea J, et al. (1999) Downregulation of JAK3 protein levels in T lymphocytes by prostaglandin E2 and other cyclic adenosine monophosphate-elevating agents: impact on interleukin-2 receptor signaling pathway. Blood 93: 2308–2318.
[27]  Bhattacharyya S, Mandal D, Saha B, Sen GS, Das T, et al. (2007) Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J Biol Chem 282: 15954–15964.
[28]  Anastassiou ED, Paliogianni F, Balow JP, Yamada H, Boumpas DT (1992) Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL2 and IL2R alpha gene expression at multiple levels. J Immunol 148: 2845–2852.
[29]  Alava MA, DeBell KE, Conti A, Hoffman T, Bonvini E (1992) Increased intracellular cyclic AMP inhibits inositol phospholipid hydrolysis induced by perturbation of the T cell receptor/CD3 complex but not by G-protein stimulation. Association with protein kinase A-mediated phosphorylation of phospholipase C-gamma 1. Biochem J 284: 189–199.
[30]  Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 88: 386–401.
[31]  Wen R, Wang D, McKay C, Bunting DK, Marini CJ, et al. (2001) Jak3 selectively regulates Bax and Bcl-2 expression to promote T-cell development. Mol Cell Biol 21: 678–689.
[32]  Webb LM, Vigorito E, Wymann MP, Hirsch E, Turner M (2005) Cutting edge: T cell development requires the combined activities of the p110gamma and p110delta catalytic isoforms of phosphatidylinositol 3-kinase. J Immunol 175: 2783–2787.
[33]  Saiagh S, Rigal D, Monier JC (1994) Effects of PGE2 upon differentiation and programmed cell death of suspension cultured CD4-CD8- thymocytes. Int J Immunopharmacol 16: 775–786.
[34]  Mastino A, Piacentini M, Grelli S, Favalli C, Autuori F, et al. (1992) Induction of apoptosis in thymocytes by prostaglandin E2 in vivo. Dev Immunol 2: 263–271.
[35]  Hilkens CM, Vermeulen H, van Neerven RJ, Snijdewint FG, Wierenga EA, et al. (1995) Differential modulation of T helper type 1 (Th1) and T helper type 2 (Th2) cytokine secretion by prostaglandin E2 critically depends on interleukin-2. Eur J Immunol 25: 59–63.
[36]  Lahiry L, Saha B, Chakraborty J, Bhattacharyya S, Chattopadhyay S, et al. (2008) Contribution of p53-mediated transcription-dependent pathway in mammary epithelial carcinoma cell apoptosis by theaflavins. Apoptosis 13: 771–781.
[37]  Prasad S, Kaur J, Roy P, Kalra N, Shukla Y (2007) Theaflavins induce G2/M arrest by modulating expression of p21waf1/cip1, cdc25C and cyclin B in human prostate carcinoma PC-3 cells. Life Sci 81: 1323–1331.
[38]  Yang CS, Liao J, Yang GY, Lu G (2005) Inhibition of lung tumorigenesis by tea. Exp Lung Res 31: 135–144.
[39]  Dreger H, Lorenz M, Kehrer A, Baumann G, Stangl K, et al. (2008) Characteristics of catechin- and theaflavin-mediated cardioprotection. Exp Biol Med 233: 427–433.
[40]  Vermeer MA, Mulder TP, Molhuizen HO (2008) Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. J Agric Food Chem 56: 12031–12036.
[41]  ?uczaj W, Skrzydlewska E (2005) Antioxidative properties of black tea. Prev Med 40: 910–918.
[42]  Alves NL, Arosa FA, van Lier RA (2007) Common gamma chain cytokines: dissidence in the details. Immunol Lett 108: 113–120.
[43]  Nakajima H, Shores EW, Noguchi M, Leonard WJ (1997) The common cytokine receptor γ-chain plays an essential role in regulating lymphoid homeostasis. J Exp Med 185: 189–195.
[44]  Taniguchi T, Minami Y (1993) The IL2/IL2 receptor system: A current overview. Cell 73: 5–8.
[45]  Oakes SA, Candotti F, Johnson JA, Chen Y-Q, Ryan JJ, et al. (1996) Signaling via IL2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and independent pathways. Immunity 5: 605–615.
[46]  Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, et al. (1994) Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370: 153–157.
[47]  Zhang Q, Nowak I. Vonderheid EC , Rook AH, Kadin ME, et al. (1996) Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA 93: 9148–9153.
[48]  Li C, Wu Z, Liu M, Pazgier M, Lu W (2008) Chemically synthesized human survivin does not inhibit caspase-3. Protein Sci 17: 1624–1629.
[49]  Hengartner MO (2001) The biochemistry of apoptosis. Nature 407: 770–776.
[50]  Micallef MJ, Yoshida K, Kawai S, Hanaya T, Kohno K, et al. (1997) In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol Immunother 43: 361–367.
[51]  Reichert TE, Rabinowich H, Johnson JT, Whiteside T (1998) Mechanisms responsible for signaling and functional defects. J Immunother 21: 295–306.
[52]  Saas P, Walker PR, Hahne M, Quiquerez AL, Schnuriger V, et al. (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Investig 99: 1173–1178.
[53]  Rabinowich H, Reichert TE, Kashii Y, Gastman BR, Bell MC, et al. (1998) Lymphocyte apoptosis induced by Fas ligand- expressing ovarian carcinoma cells. Implications for altered expression of T cell receptor in tumor-associated lymphocytes. J Clin Investig 101: 2579–2588.
[54]  Saito T, Dworacki G, Gooding W, Lotze MT, Whiteside TL (2000) Spontaneous apoptosis of CD8+ T lymphocytes in peripheral blood of patients with advanced melanoma. Clin Cancer Res 6: 1351–1364.
[55]  Watanabe S, Kagamu H, Yoshizawa H, Fujita N, Tanaka H, et al. (2003) The duration of signaling through CD40 directs biological ability of dendritic cells to induce antitumor immunity. J Immunol 171: 5828–5836.
[56]  Shreedhar V, Moodycliffe AM, Ullrich SE, Bucana C, Kripke ML, et al. (1999) Dendritic cells require T cells for functional maturation in vivo. Immunity 11: 625–636.
[57]  Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393: 480–483.
[58]  Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, et al. (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5: 1143–1148.
[59]  Bevan MJ (2004) Helping the CD8+ T- cell response. Nat Rev Immunol 4: 595–602.
[60]  Wang JC, Livingstone AM (2003) Cutting Edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol 171: 6339–6343.
[61]  Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, et al. (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65: 5211–5220.
[62]  Pockaj BA, Basu GD, Pathangey LB, Gray RJ, Hernandez JL, et al. (2004) Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11: 328–339.
[63]  Kolenko V, Wang Q, Riedy MC, O'Shea J, Ritz J, et al. (1997) Tumor-induced suppression of T lymphocyte proliferation coincides with inhibition of Jak3 expression and IL2 receptor signaling: role of soluble products from human renal cell carcinomas. J Immunol 159: 3057–3067.
[64]  Goodwin JS, Bankhurst AD, Messner RP (1977) Suppression of human T-cell mitogenesis by prostaglandin. Existence of a prostaglandin-producing suppressor cell. J Exp Med 146: 1719–1734.
[65]  Astoul E, Edmunds C, Cantrell DA, Ward SG (2001) PI 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models. Trends Immunol 22: 490–496.
[66]  Baird AM, Thomis DC, Berg LJ (1998) T cell development and activation in Jak3-deficient mice. J Leukocyte Biol 63: 669–677.
[67]  Thomis DC, Berg LJ (1997) Peripheral expression of Jak3 is required to maintain T lymphocyte function. J Exp Med 185: 197–206.
[68]  Anastassiou ED, Paliogianni F, Balow JP, Yamada H, Boumpas DT (1992) Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL2 and IL2R alpha gene expression at multiple levels. J Immunol 148: 2845–2852.
[69]  Bhattacharyya A, Lahiry L, Mandal D, Sa G, Das T (2005) Black tea induces tumor cell apoptosis by Bax translocation, loss in mitochondrial transmembrane potential, cytochrome c release and caspase activation. Int J Cancer 117: 308–315.
[70]  Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280: 20059–20068.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133