全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Bioinformatic Strategy for the Detection, Classification and Analysis of Bacterial Autotransporters

DOI: 10.1371/journal.pone.0043245

Full-Text   Cite this paper   Add to My Lib

Abstract:

Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters.

References

[1]  Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. International Journal of Medical Microbiology : IJMM 297: 401–415.
[2]  Durand E, Verger D, Rego AT, Chandran V, Meng G, et al. (2009) Structural biology of bacterial secretion systems in gram-negative pathogens–potential for new drug targets. Infectious Disorders Drug Targets 9: 518–547.
[3]  Holland IB (2010) The extraordinary diversity of bacterial protein secretion mechanisms. Methods in Molecular Biology 619: 1–20.
[4]  Rego AT, Chandran V, Waksman G (2010) Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. The Biochemical Journal 425: 475–488.
[5]  Salacha R, Kovacic F, Brochier-Armanet C, Wilhelm S, Tommassen J, et al. (2010) The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environmental microbiology 12: 1498–1512.
[6]  Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: structure and function of the autotransporter proteins. Trends in Microbiology 6: 370–378.
[7]  Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiology and Molecular Biology Reviews : MMBR 68: 692–744.
[8]  Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Annual Review of Microbiology 61: 89–112.
[9]  Nishimura K, Tajima N, Yoon YH, Park SY, Tame JR (2010) Autotransporter passenger proteins: virulence factors with common structural themes. Journal of Molecular Medicine 88: 451–458.
[10]  Leyton DL, Rossiter AE, Henderson IR (2012) From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nature Reviews Microbiology 10: 213–225.
[11]  Thanassi DG, Hultgren SJ (2000) Multiple pathways allow protein secretion across the bacterial outer membrane. Current Opinion in Cell Biology 12: 420–430.
[12]  Kajava AV, Steven AC (2006) The turn of the screw: variations of the abundant beta-solenoid motif in passenger domains of Type V secretory proteins. Journal of Structural Biology 155: 306–315.
[13]  Khan S, Mian HS, Sandercock LE, Chirgadze NY, Pai EF (2011) Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. Journal of Molecular Biology 413: 985–1000.
[14]  Johnson TA, Qiu J, Plaut AG, Holyoak T (2009) Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of Haemophilus influenzae immunoglobulin A1 protease. Journal of Molecular Biology 389: 559–574.
[15]  Meng G, Spahich N, Kenjale R, Waksman G, St Geme JW, 3rd (2011) Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. The EMBO Journal 30: 3864–3874.
[16]  Otto BR, Sijbrandi R, Luirink J, Oudega B, Heddle JG, et al. (2005) Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. The Journal of Biological Chemistry 280: 17339–17345.
[17]  Renn JP, Junker M, Besingi RN, Braselmann E, Clark PL (2011) ATP-Independent Control of Autotransporter Virulence Protein Transport via the Folding Properties of the Secreted Protein. Chemistry & Biology.
[18]  Junker M, Schuster CC, McDonnell AV, Sorg KA, Finn MC, et al. (2006) Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proceedings of the National Academy of Sciences of the United States of America 103: 4918–4923.
[19]  Mazar J, Cotter PA (2007) New insight into the molecular mechanisms of two-partner secretion. Trends in Microbiology 15: 508–515.
[20]  Hodak H, Jacob-Dubuisson F (2007) Current challenges in autotransport and two-partner protein secretion pathways. Research in Microbiology 158: 631–637.
[21]  van den Berg B (2010) Crystal structure of a full-length autotransporter. Journal of Molecular Biology 396: 627–633.
[22]  Brandon LD, Goldberg MB (2001) Periplasmic transit and disulfide bond formation of the autotransported Shigella protein IcsA. Journal of Bacteriology 183: 951–958.
[23]  Skillman KM, Barnard TJ, Peterson JH, Ghirlando R, Bernstein HD (2005) Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Molecular Microbiology 58: 945–958.
[24]  Veiga E, de Lorenzo V, Fernandez LA (2004) Structural tolerance of bacterial autotransporters for folded passenger protein domains. Molecular Microbiology 52: 1069–1080.
[25]  Ieva R, Bernstein HD (2009) Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proceedings of the National Academy of Sciences of the United States of America 106: 19120–19125.
[26]  Sauri A, Soprova Z, Wickstrom D, de Gier JW, Van der Schors RC, et al. (2009) The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology 155: 3982–3991.
[27]  Ieva R, Tian P, Peterson JH, Bernstein HD (2011) Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. Proceedings of the National Academy of Sciences of the United States of America 108: E383–391.
[28]  Leyton DL, Sevastsyanovich YR, Browning DF, Rossiter AE, Wells TJ, et al. (2011) Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins. The Journal of Biological Chemistry 286: 42283–42291.
[29]  Selkrig J, Mosbahi K, Webb CT, Belousoff MJ, Perry AJ, et al.. (2012) Discovery of an archetypal protein transport system in bacterial outer membranes. Nature Structural & Molecular Biology 19: 506–510, S501.
[30]  Bernstein HD (2007) Are bacterial ‘autotransporters’ really transporters? Trends in Microbiology 15: 441–447.
[31]  Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, et al. (2008) Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132: 1011–1024.
[32]  Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, et al. (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biology 4: e377.
[33]  Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Research 12: 1619–1623.
[34]  Wells TJ, Totsika M, Schembri MA (2010) Autotransporters of Escherichia coli: a sequence-based characterization. Microbiology 156: 2459–2469.
[35]  Allsopp LP, Totsika M, Tree JJ, Ulett GC, Mabbett AN, et al. (2010) UpaH is a newly identified autotransporter protein that contributes to biofilm formation and bladder colonization by uropathogenic Escherichia coli CFT073. Infection and Immunity 78: 1659–1669.
[36]  Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S (2005) Citrobacter rodentium of mice and man. Cellular Microbiology 7: 1697–1706.
[37]  Borenshtein D, McBee ME, Schauer DB (2008) Utility of the Citrobacter rodentium infection model in laboratory mice. Current Opinion in Gastroenterology 24: 32–37.
[38]  Petty NK, Bulgin R, Crepin VF, Cerdeno-Tarraga AM, Schroeder GN, et al. (2010) The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. Journal of Bacteriology 192: 525–538.
[39]  Desvaux M, Khan A, Beatson SA, Scott-Tucker A, Henderson IR (2005) Protein secretion systems in Fusobacterium nucleatum: genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis. Biochimica et Biophysica Acta 1713: 92–112.
[40]  Ashgar SS, Oldfield NJ, Wooldridge KG, Jones MA, Irving GJ, et al. (2007) CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. Journal of Bacteriology 189: 1856–1865.
[41]  Henderson IR, Lam AC (2001) Polymorphic proteins of Chlamydia spp.–autotransporters beyond the Proteobacteria. Trends in Microbiology 9: 573–578.
[42]  Swanson KA, Taylor LD, Frank SD, Sturdevant GL, Fischer ER, et al. (2009) Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infection and Immunity 77: 508–516.
[43]  Wells TJ, Tree JJ, Ulett GC, Schembri MA (2007) Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiology Letters 274: 163–172.
[44]  Yen YT, Kostakioti M, Henderson IR, Stathopoulos C (2008) Common themes and variations in serine protease autotransporters. Trends in Microbiology 16: 370–379.
[45]  van Ulsen P (2011) Protein folding in bacterial adhesion: secretion and folding of classical monomeric autotransporters. Advances in Experimental Medicine and Biology 715: 125–142.
[46]  Hoopman TC, Wang W, Brautigam CA, Sedillo JL, Reilly TJ, et al. (2008) Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase. Journal of Bacteriology 190: 1459–1472.
[47]  Klemm P, Vejborg RM, Sherlock O (2006) Self-associating autotransporters, SAATs: functional and structural similarities. International Journal of Medical Microbiology : IJMM 296: 187–195.
[48]  Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ (1989) Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin. Proceedings of the National Academy of Sciences of the United States of America 86: 3867–3871.
[49]  Kingsley RA, Santos RL, Keestra AM, Adams LG, Baumler AJ (2002) Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Molecular Microbiology 43: 895–905.
[50]  Coutte L, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F (2001) Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. The EMBO Journal 20: 5040–5048.
[51]  Fernandez RC, Weiss AA (1994) Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infection and Immunity 62: 4727–4738.
[52]  Wehrl W, Brinkmann V, Jungblut PR, Meyer TF, Szczepek AJ (2004) From the inside out–processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Molecular Microbiology 51: 319–334.
[53]  Kiselev AO, Skinner MC, Lampe MF (2009) Analysis of PmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2. PloS One 4: e5191.
[54]  Blanke SR (2005) Micro-managing the executioner: pathogen targeting of mitochondria. Trends in Microbiology 13: 64–71.
[55]  de Cock H, Struyve M, Kleerebezem M, van der Krift T, Tommassen J (1997) Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. Journal of Molecular Biology 269: 473–478.
[56]  Jansen C, Heutink M, Tommassen J, de Cock H (2000) The assembly pathway of outer membrane protein PhoE of Escherichia coli. European Journal of Biochemistry/FEBS 267: 3792–3800.
[57]  Barnard TJ, Dautin N, Lukacik P, Bernstein HD, Buchanan SK (2007) Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nature Structural & Molecular Biology 14: 1214–1220.
[58]  Barnard TJ, Gumbart J, Peterson JH, Noinaj N, Easley NC, et al. (2012) Molecular basis for the activation of a catalytic asparagine residue in a self-cleaving bacterial autotransporter. Journal of Molecular Biology 415: 128–142.
[59]  Oomen CJ, van Ulsen P, van Gelder P, Feijen M, Tommassen J, et al. (2004) Structure of the translocator domain of a bacterial autotransporter. The EMBO Journal 23: 1257–1266.
[60]  Tajima N, Kawai F, Park SY, Tame JR (2010) A novel intein-like autoproteolytic mechanism in autotransporter proteins. Journal of Molecular Biology 402: 645–656.
[61]  Ohnishi Y, Beppu T, Horinouchi S (1997) Two genes encoding serine protease homologues in Serratia marcescens and characterization of their products in Escherichia coli. Journal of Biochemistry 121: 902–913.
[62]  Leyton DL, Sloan J, Hill RE, Doughty S, Hartland EL (2003) Transfer region of pO113 from enterohemorrhagic Escherichia coli: similarity with R64 and identification of a novel plasmid-encoded autotransporter, EpeA. Infection and Immunity 71: 6307–6319.
[63]  Gangwer KA, Mushrush DJ, Stauff DL, Spiller B, McClain MS, et al. (2007) Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proceedings of the National Academy of Sciences of the United States of America 104: 16293–16298.
[64]  Emsley P, Charles IG, Fairweather NF, Isaacs NW (1996) Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381: 90–92.
[65]  Ruiz-Perez F, Henderson IR, Leyton DL, Rossiter AE, Zhang Y, et al. (2009) Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. Journal of Bacteriology 191: 6571–6583.
[66]  Bitto E, McKay DB (2003) The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. The Journal of Biological Chemistry 278: 49316–49322.
[67]  Stymest KH, Klappa P (2008) The periplasmic peptidyl prolyl cis-trans isomerases PpiD and SurA have partially overlapping substrate specificities. The FEBS Journal 275: 3470–3479.
[68]  Jain S, Goldberg MB (2007) Requirement for YaeT in the outer membrane assembly of autotransporter proteins. Journal of Bacteriology 189: 5393–5398.
[69]  Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299: 262–265.
[70]  Rossiter AE, Leyton DL, Tveen-Jensen K, Browning DF, Sevastsyanovich Y, et al. (2011) The essential beta-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. Journal of Bacteriology 193: 4250–4253.
[71]  Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37: 14713–14718.
[72]  Killian JA, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends in Biochemical Sciences 25: 429–434.
[73]  Kostakioti M, Stathopoulos C (2006) Role of the alpha-helical linker of the C-terminal translocator in the biogenesis of the serine protease subfamily of autotransporters. Infection and Immunity 74: 4961–4969.
[74]  Dautin N, Bernstein HD (2011) Residues in a conserved alpha-helical segment are required for cleavage but not secretion of an Escherichia coli serine protease autotransporter passenger domain. Journal of Bacteriology 193: 3748–3756.
[75]  Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340: 783–795.
[76]  Marsden RL, McGuffin LJ, Jones DT (2002) Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein science : a publication of the Protein Society 11: 2814–2824.
[77]  Likic VA, Dolezal P, Celik N, Dagley M, Lithgow T (2010) Using hidden markov models to discover new protein transport machines. Methods in Molecular Biology 619: 271–284.
[78]  Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37: W202–208.
[79]  Zhai Y, Zhang K, Huo Y, Zhu Y, Zhou Q, et al. (2011) Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the beta-domain pore. The Biochemical Journal 435: 577–587.
[80]  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Research 28: 235–242.
[81]  Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Research 14: 1188–1190.
[82]  Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Research 18: 6097–6100.
[83]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
[84]  Felsenstein J (1989) PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5: 164–166.
[85]  Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128.
[86]  Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research 39: W475–478.
[87]  Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The Pfam protein families database. Nucleic Acids Research 38: D211–222.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133