Background The ε2, ε3, and ε4 alleles of the apolipoprotein E gene (APOE) encode three isoforms, apoE2, E3, and E4, respectively. The apoE isoforms circulate in different plasma concentrations, but plasma concentrations of the same isoform also differ between individuals. Whereas the isoforms have been associated with cardiovascular disease, the relation between plasma apoE levels and cardiovascular disease is unknown. Methods and Findings We assessed APOE genotypes, plasma levels of apoE, cardiovascular risk factors, and mortality in a population-based sample of 546 individuals aged 85 y who participated in the Leiden 85-plus Study and were prospectively followed for specific causes of death for 5 y. Participants in the highest tertile of apoE levels suffered a twofold-increased risk of cardiovascular mortality (hazard ratio compared to lowest tertile, 2.08; 95% confidence interval [CI], 1.30 to 3.33). Among the 324 participants with the ε3ε3 genotype, the hazard from cardiovascular disease was threefold increased (highest versus lowest tertile 3.01; 95% CI 1.60 to 5.66), with similar estimates for men and women. Other causes of death were not increased significantly. Plasma levels of apoE in ε3ε3 participants were positively correlated with total cholesterol ( p < 0.001), low-density lipoprotein cholesterol ( p < 0.001) and triglycerides ( p < 0.001) and negatively with high-density lipoprotein cholesterol levels ( p = 0.010). Adjustment for plasma lipids did not change the hazard ratios, whereas interaction was absent. The risk associated with high levels of apoE, however, was strongest in participants from the lowest tertile of C-reactive protein (CRP) levels and absent in those from the highest tertile ( pinteraction < 0.001). Among participants from the lowest tertile of CRP levels, those with a high apoE levels had a significantly steeper increase in CRP than those with low apoE levels ( p = 0.020). Similar cardiovascular mortality risks as in ε3ε3 participants were found in ε2 and ε4 carriers. Conclusions In old age, high plasma apoE levels precede an increase of circulating CRP and strongly associates with cardiovascular mortality, independent of APOE genotype and plasma lipids.
References
[1]
Mahley RW, Ji ZS (1999) Remnant lipoprotein metabolism: Key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40: 1–16.
[2]
Weisgraber KH, Rall SC, Mahley RW (1981) Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem 256: 9077–9083.
[3]
Smit M, de Knijff P, Rosseneu M, Bury J, Klasen E, et al. (1988) Apolipoprotein E polymorphism in The Netherlands and its effect on plasma lipid and apolipoprotein levels. Hum Genet 80: 287–292.
[4]
Utermann G, Pruin N, Steinmetz A (1979) Polymorphism of apolipoprotein E. III. Effect of a single polymorphic gene locus on plasma lipid levels in man. Clin Genet 15: 63–72.
[5]
Schaefer EJ (2002) Lipoproteins, nutrition, and heart disease. Am J Clin Nutr 75: 191–212.
[6]
Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, et al. (2002) Apolipoprotein E polymorphism and cardiovascular disease: A HuGE review. Am J Epidemiol 155: 487–495.
[7]
Herz J, Beffert U (2000) Apolipoprotein E receptors: Linking brain development and Alzheimer's disease. Nat Rev Neurosci 1: 51–58.
[8]
Neale MC, de Knijff P, Havekes LM, Boomsma DI (2000) ApoE polymorphism accounts for only part of the genetic variation in quantitative ApoE levels. Genet Epidemiol 18: 331–340.
[9]
Boerwinkle E, Utermann G (1988) Simultaneous effects of the apolipoprotein E polymorphism on apolipoprotein E, apolipoprotein B, and cholesterol metabolism. Am J Hum Genet 42: 104–112.
[10]
Haddy N, De Bacquer D, Chemaly MM, Maurice M, Ehnholm C, et al. (2002) The importance of plasma apolipoprotein E concentration in addition to its common polymorphism on inter-individual variation in lipid levels: Results from Apo Europe. Eur J Hum Genet 10: 841–850.
[11]
van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, et al. (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437: 906–910.
[12]
Weverling-Rijnsburger AW, Jonkers IJ, van Exel E, Gussekloo J, Westendorp RG (2003) High-density vs low-density lipoprotein cholesterol as the risk factor for coronary artery disease and stroke in old age. Arch Intern Med 163: 1549–1554.
[13]
Bootsma-Van Der Wiel A, van Exel E, de Craen AJ, Gussekloo J, Lagaay AM, et al. (2002) A high response is not essential to prevent selection bias: Results from the Leiden 85-plus study. J Clin Epidemiol 55: 1119–1125.
[14]
van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Hogen BH, Esch H, et al. (1994) Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 93: 1403–1410.
[15]
Larkin L, Khachigian LM, Jessup W (2000) Regulation of apolipoprotein E production in macrophages (review). Int J Mol Med 6: 253–258.
[16]
Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, et al. (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71: 343–353.
[17]
Linton MF, Atkinson JB, Fazio S (1995) Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267: 1034–1037.
[18]
Bellosta S, Mahley RW, Sanan DA, Murata J, Newland DL, et al. (1995) Macrophage-specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice. J Clin Invest 96: 2170–2179.
[19]
Shimano H, Yamada N, Katsuki M, Shimada M, Gotoda T, et al. (1992) Overexpression of apolipoprotein E in transgenic mice: Marked reduction in plasma lipoproteins except high density lipoprotein and resistance against diet-induced hypercholesterolemia. Proc Natl Acad Sci U S A 89: 1750–1754.
[20]
Schaefer EJ, Gregg RE, Ghiselli G, Forte TM, Ordovas JM, et al. (1986) Familial apolipoprotein E deficiency. J Clin Invest 78: 1206–1219.
[21]
O'Brien KD, Deeb SS, Ferguson M, McDonald TO, Allen MD, et al. (1994) Apolipoprotein E localization in human coronary atherosclerotic plaques by in situ hybridization and immunohistochemistry and comparison with lipoprotein lipase. Am J Pathol 144: 538–548.
[22]
Zhang WY, Gaynor PM, Kruth HS (1996) Apolipoprotein E produced by human monocyte-derived macrophages mediates cholesterol efflux that occurs in the absence of added cholesterol acceptors. J Biol Chem 271: 28641–28646.
[23]
Newman TC, Dawson PA, Rudel LL, Williams DL (1985) Quantitation of apolipoprotein E mRNA in the liver and peripheral tissues of nonhuman primates. J Biol Chem 260: 2452–2457.
[24]
Beekman M, Heijmans BT, Martin NG, Pedersen NL, Whitfield JB, et al. (2002) Heritabilities of apolipoprotein and lipid levels in three countries. Twin Res 5: 87–97.
[25]
Siest G, Pillot T, Regis-Bailly A, Leininger-Muller B, Steinmetz J, et al. (1995) Apolipoprotein E: An important gene and protein to follow in laboratory medicine. Clin Chem 41: 1068–1086.
[26]
Fazio S, Babaev VR, Murray AB, Hasty AH, Carter KJ, et al. (1997) Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc Natl Acad Sci U S A 94: 4647–4652.
[27]
Tsukamoto K, Tangirala RK, Chun S, Usher D, Pure E, et al. (2000) Hepatic expression of apolipoprotein E inhibits progression of atherosclerosis without reducing cholesterol levels in LDL receptor-deficient mice. Mol Ther 1: 189–194.
[28]
Thorngate FE, Rudel LL, Walzem RL, Williams DL (2000) Low levels of extrahepatic nonmacrophage ApoE inhibit atherosclerosis without correcting hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 20: 1939–1945.
[29]
Lada AT, Rudel LL (2004) Associations of low density lipoprotein particle composition with atherogenicity. Curr Opin Lipidol 15: 19–24.
Twickler TB, Dallinga-Thie GM, Cohn JS, Chapman MJ (2004) Elevated remnant-like particle cholesterol concentration: A characteristic feature of the atherogenic lipoprotein phenotype. Circulation 109: 1918–1925.
[32]
Weverling-Rijnsburger AW, Blauw GJ, Lagaay AM, Knook DL, Meinders AE, et al. (1997) Total cholesterol and risk of mortality in the oldest old. Lancet 350: 1119–1123.
[33]
Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, et al. (2003) Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290: 2030–2040.
[34]
Cohn JS, Rodriguez C, Jacques H, Tremblay M, Davignon J (2004) Storage of human plasma samples leads to alterations in the lipoprotein distribution of apoC-III and apoE. J Lipid Res 45: 1572–1579.
[35]
Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, et al. (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352: 20–28.
[36]
Rensen PC, Oosten M, Bilt E, Eck M, Kuiper J, et al. (1997) Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats In vivo. J Clin Invest 99: 2438–2445.
[37]
Van Oosten M, Rensen PC, Van Amersfoort ES, Van Eck M, Van Dam AM, et al. (2001) Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis. J Biol Chem 276: 8820–8824.
[38]
Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, et al. (2002) Pravastatin in elderly individuals at risk of vascular disease (PROSPER): A randomised controlled trial. Lancet 360: 1623–1630.
[39]
Packard CJ, Ford I, Robertson M, Shepherd J, Blauw GJ, et al. (2005) Plasma lipoproteins and apolipoproteins as predictors of cardiovascular risk and treatment benefit in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Circulation 112: 3058–3065.
[40]
Beekman M, Posthuma D, Heijmans BT, Lakenberg N, Suchiman HE, et al. (2004) Combined association and linkage analysis applied to the APOE locus. Genet Epidemiol 26: 328–337.
[41]
Lund-Katz S, Wehrli S, Zaiou M, Newhouse Y, Weisgraber KH, et al. (2001) Effects of polymorphism on the microenvironment of the LDL receptor-binding region of human apoE. J Lipid Res 42: 894–901.
[42]
Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC, et al. (2003) Effects of polymorphism on the lipid interaction of human apolipoprotein E. J Biol Chem 278: 40723–40729.
[43]
Wilson PW, Schaefer EJ, Larson MG, Ordovas JM (1996) Apolipoprotein E alleles and risk of coronary disease. A meta-analysis. Arterioscler Thromb Vasc Biol 16: 1250–1255.