全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2006 

Lentiviral Expression of Retinal Guanylate Cyclase-1 (RetGC1) Restores Vision in an Avian Model of Childhood Blindness

DOI: 10.1371/journal.pmed.0030201

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Leber congenital amaurosis (LCA) is a genetically heterogeneous group of retinal diseases that cause congenital blindness in infants and children. Mutations in the GUCY2D gene that encodes retinal guanylate cyclase–1 (retGC1) were the first to be linked to this disease group (LCA type 1 [LCA1]) and account for 10%–20% of LCA cases. These mutations disrupt synthesis of cGMP in photoreceptor cells, a key second messenger required for function of these cells. The GUCY1*B chicken, which carries a null mutation in the retGC1 gene, is blind at hatching and serves as an animal model for the study of LCA1 pathology and potential treatments in humans. Methods and Findings A lentivirus-based gene transfer vector carrying the GUCY2D gene was developed and injected into early-stage GUCY1*B embryos to determine if photoreceptor function and sight could be restored to these animals. Like human LCA1, the avian disease shows early-onset blindness, but there is a window of opportunity for intervention. In both diseases there is a period of photoreceptor cell dysfunction that precedes retinal degeneration. Of seven treated animals, six exhibited sight as evidenced by robust optokinetic and volitional visual behaviors. Electroretinographic responses, absent in untreated animals, were partially restored in treated animals. Morphological analyses indicated there was slowing of the retinal degeneration. Conclusions Blindness associated with loss of function of retGC1 in the GUCY1*B avian model of LCA1 can be reversed using viral vector-mediated gene transfer. Furthermore, this reversal can be achieved by restoring function to a relatively low percentage of retinal photoreceptors. These results represent a first step toward development of gene therapies for one of the more common forms of childhood blindness.

References

[1]  Burns ME, Arshavsky VY (2005) Beyond counting photons: Trials and trends in vertebrate visual transduction. Neuron 48: 387–401.
[2]  Farber DB (1995) From mice to men: The cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture. Invest Ophthalmol Vis Sci 36: 263–275.
[3]  Pittler SJ, Baehr W (1991) Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88: 8322–8326.
[4]  Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, et al. (1990) Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347: 677–680.
[5]  Suber ML, Pittler SJ, Qin N, Wright GC, Holcombe V, et al. (1993) Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc Natl Acad Sci U S A 90: 3968–3972.
[6]  Farber DB, Danciger JS, Aguirre G (1992) The beta subunit of cyclic GMP phosphodiesterase mRNA is deficient in canine rod-cone dysplasia 1. Neuron 9: 349–356.
[7]  McLaughlin ME, Sandberg MA, Berson EL, Dryja TP (1993) Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 4: 130–134.
[8]  Liu X, Bulgakov OV, Wen XH, Woodruff ML, Pawlyk B, et al. (2004) AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci U S A 101: 13903–13908.
[9]  Ramamurthy V, Niemi GA, Reh TA, Hurley JB (2004) Leber congenital amaurosis linked to AIPL1: A mouse model reveals destabilization of cGMP phosphodiesterase. Proc Natl Acad Sci U S A 101: 13897–13902.
[10]  Sohocki MM, Perrault I, Leroy BP, Payne AM, Dharmaraj S, et al. (2000) Prevalence of AIPL1 mutations in inherited retinal degenerative disease. Mol Genet Metab 70: 142–150.
[11]  Semple-Rowland SL, Lee NR, Van Hooser JP, Palczewski K, Baehr W (1998) A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci U S A 95: 1271–1276.
[12]  Ulshafer RJ, Allen C, Dawson WW, Wolf ED (1984) Hereditary retinal degeneration in the Rhode Island Red chicken. I. Histology and ERG. Exp Eye Res 39: 125–135.
[13]  Milam AH, Barakat MR, Gupta N, Rose L, Aleman TS, et al. (2003) Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis. Ophthalmology 110: 549–558.
[14]  Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, et al. (1996) Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet 14: 461–464.
[15]  Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, et al. (2000) Spectrum of retGC1 mutations in Leber's congenital amaurosis. Eur J Hum Genet 8: 578–582.
[16]  Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, et al. (1996) Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med 2: 649–654.
[17]  Kumar-Singh R, Farber DB (1998) Encapsidated adenovirus mini-chromosome-mediated delivery of genes to the retina: Application to the rescue of photoreceptor degeneration. Hum Mol Genet 7: 1893–1900.
[18]  Takahashi M, Miyoshi H, Verma IM, Gage FH (1999) Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73: 7812–7816.
[19]  Preising MN, Heegard S (2004) Recent advances in early-onset severe retinal degeneration: More than just basic research. Trends Mol Med 10: 51–54.
[20]  Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, et al. (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28: 92–95.
[21]  Batten ML, Imanishi Y, Tu DC, Doan T, Zhu L, et al. (2005) Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis. PLoS Med 2: e333. doi: 10.1371/journal.pmed.0020333.
[22]  Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, et al. (2004) In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 9: 182–188.
[23]  Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, et al. (2003) Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 44: 1663–1672.
[24]  Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, et al. (2005) Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 13: 565–572.
[25]  Vollrath D, Feng W, Duncan JL, Yasumura D, D'Cruz PM, et al. (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A 98: 12584–12589.
[26]  Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, et al. (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25: 306–310.
[27]  Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, et al. (2005) Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci 46: 3039–3045.
[28]  Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL, et al. (1998) Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci 39: 2405–2416.
[29]  Cremers FP, van den Hurk JA, den Hollander AI (2002) Molecular genetics of Leber congenital amaurosis. Hum Mol Genet 11: 1169–1176.
[30]  Coleman JE, Fuchs GE, Semple-Rowland SL (2002) Analyses of the guanylate cyclase activating protein-1 gene promoter in the developing retina. Invest Ophthalmol Vis Sci 43: 1335–1343.
[31]  Coleman JE, Wu K, Fulle HJ, Semple-Rowland SL (2004) The 5′ flanking sequence of the human retGC1 gene acquires a photoreceptor cell restricted activity pattern over the course of retinal development. Mol Vis 10: 720–727.
[32]  Kumar M, Keller B, Makalou N, Sutton RE (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12: 1893–1905.
[33]  Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, et al. (2003) Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12: 221–228.
[34]  Goraczniak RM, Duda T, Sitaramayya A, Sharma RK (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase. Biochem J 302: 455–461.
[35]  Liu X, Seno K, Nishizawa Y, Hayashi F, Yamazaki A, et al. (1994) Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59: 761–768.
[36]  Papermaster DS (1982) Preparation of retinal rod outer segments. Methods Enzymol 81: 48–52.
[37]  Otto-Bruc A, Buczylko J, Surgucheva I, Subbaraya I, Rudnicka-Nawrot M, et al. (1997) Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase-activating protein 1. Biochemistry 36: 4295–4302.
[38]  Schoenmakers TJ, Visser GJ, Flik G, Theuvenet AP (1992) CHELATOR: An improved method for computing metal ion concentrations in physiological solutions. Biotechniques 12: 870–879.
[39]  Semple-Rowland SL, Cheng KM (1999) rd and rc chickens carry the same GC1 null allele (GUCY1*). Exp Eye Res 69: 579–581.
[40]  Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195: 231–272.
[41]  Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1: 376–382.
[42]  Gregory TR (2005) Animal Genome Size Database [database]. Available: http://www.genomesize.com. Accessed 11 April 2006 .
[43]  Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, et al. (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270: 22029–22036.
[44]  Conley M, Fite KV (1980) Optokinetic nystagmus in the domestic pigeon. Effects of foveal lesions. Brain Behav Evol 17: 89–102.
[45]  Komenda JK, Fite KV (1983) Optokinetic nystagmus in progressive retinal degeneration. Behav Neurosci 97: 928–936.
[46]  Schmid KL, Wildsoet CF (1998) Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm. Vision Res 38: 2629–2634.
[47]  Ulshafer RJ, Allen CB (1985) Hereditary retinal degeneration in the Rhode Island Red chicken: Ultrastructural analysis. Exp Eye Res 40: 865–877.
[48]  Sarra GM, Stephens C, Bainbridge JW, Smith AJ, et al. (2001) Gene replacement therapy in the retinal degeneration slow (rds) mouse: The effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 10: 2353–2361.
[49]  Ripps H (2002) Cell death in retinitis pigmentosa: Gap junctions and the ‘bystander' effect. Exp Eye Res 74: 327–336.
[50]  Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, et al. (1993) The “bystander effect”: Tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 53: 5274–5283.
[51]  Huang PC, Gaitan AE, Hao Y, Petters RM, Wong F (1993) Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proc Natl Acad Sci U S A 90: 8484–8488.
[52]  Kedzierski W, Bok D, Travis GH (1998) Non-cell-autonomous photoreceptor degeneration in rds mutant mice mosaic for expression of a rescue transgene. J Neurosci 18: 4076–4082.
[53]  Coleman JE, Zhang Y, Brown GA, Semple-Rowland SL (2004) Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice. Invest Ophthalmol Vis Sci 45: 3397–3403.
[54]  Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, et al. (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19: 5889–5897.
[55]  Cideciyan AV, Hood DC, Huang Y, Banin E, Li ZY, et al. (1998) Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc Natl Acad Sci U S A 95: 7103–7108.
[56]  Downes SM, Payne AM, Kelsell RE, Fitzke FW, Holder GE, et al. (2001) Autosomal dominant cone-rod dystrophy with mutations in the guanylate cyclase 2D gene encoding retinal guanylate cyclase-1. Arch Ophthalmol 119: 1667–1673.
[57]  Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB, et al. (2005) ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Invest Ophthalmol Vis Sci 46: 4739–4746.
[58]  Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, et al. (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12: 1072–1082.
[59]  Green ES, Rendahl KG, Zhou S, Ladner M, Coyne M, et al. (2001) Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of FGF-5 and FGF-18. Mol Ther 3: 507–515.
[60]  Lau D, McGee LH, Zhou S, Rendahl KG, Manning WC, et al. (2000) Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2. Invest Ophthalmol Vis Sci 41: 3622–3633.
[61]  Liang FQ, Aleman TS, Dejneka NS, Dudus L, Fisher KJ, et al. (2001) Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol Ther 4: 461–472.
[62]  Bennett J, Zeng Y, Bajwa R, Klatt L, Li Y, et al. (1998) Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Ther 5: 1156–1164.
[63]  Chen J, Flannery JG, LaVail MM, Steinberg RH, Xu J, et al. (1996) bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc Natl Acad Sci U S A 93: 7042–7047.
[64]  Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, et al. (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36: 755–759.
[65]  Carroll J, Neitz M, Hofer H, Neitz J, Williams DR (2004) Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. Proc Natl Acad Sci U S A 101: 8461–8466.
[66]  Geller AM, Sieving PA (1993) Assessment of foveal cone photoreceptors in Stargardt's macular dystrophy using a small dot detection task. Vision Res 33: 1509–1524.
[67]  Seiple W, Holopigian K, Szlyk JP, Greenstein VC (1995) The effects of random element loss on letter identification—Implications for visual-acuity loss in patients with retinitis-pigmentosa. Vis Res 35: 2057–2066.
[68]  Porto FB, Perrault I, Hicks D, Rozet JM, Hanoteau N, et al. (2003) Prenatal human ocular degeneration occurs in Leber's congenital amaurosis (LCA1 and 2). Adv Exp Med Biol 533: 59–68.
[69]  Booij JC, Florijn RJ, ten Brink JB, Loves W, Meire F, et al. (2005) Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. J Med Genet 42: e67.
[70]  Galvin JA, Fishman GA, Stone EM, Koenekoop RK (2005) Evaluation of genotype-phenotype associations in Leber congenital amaurosis. Retina 25: 919–929.
[71]  Lotery AJ, Namperumalsamy P, Jacobson SG, Weleber RG, Fishman GA, et al. (2000) Mutation analysis of 3 genes in patients with Leber congenital amaurosis. Arch Ophthalmol 118: 538–543.
[72]  Jacobson SG, Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB, et al. (2005) Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success. Proc Natl Acad Sci U S A 102: 6177–6182.
[73]  Dinculescu A, Glushakova L, Min SH, Hauswirth WW (2005) Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 16: 649–663.
[74]  Flannery JG, Zolotukhin S, Vaquero MI, LaVail MM, Muzyczka N, et al. (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci U S A 94: 6916–6921.
[75]  Rolling F (2004) Recombinant AAV-mediated gene transfer to the retina: Gene therapy perspectives. Gene Ther 11: S26–S32.
[76]  Sinn PL, Sauter SL, McCray PB (2005) Gene therapy progress and prospects: Development of improved lentiviral and retroviral vectors—Design, biosafety, and production. Gene Ther 12: 1089–1098.
[77]  Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, et al. (2006) Lentivirus-mediated gene transfer to the central nervous system: Therapeutic and research applications. Hum Gene Ther 17: 1–9.
[78]  Yá?ez-Mu?oz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, et al. (2006) Effective gene therapy with nonintegrating lentivral vectors. Nat Med 12: 348–353.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133