Background Malaria and hypertension are major causes of maternal mortality in tropical countries, especially during first pregnancies, but evidence for a relationship between these syndromes is contradictory. Methods and Findings In a cross-sectional survey of Tanzanian parturients, the rate of hypertension was similar in placental malaria (PM)-positive (11/85 = 13%) and PM-negative (73/602 = 12%) individuals. However, we found that PM was associated with hypertension in first-time mothers aged 18–20 y but not other mothers. Hypertension was also associated with histologic features of chronic malaria, which is common in first-time mothers. Levels of soluble vascular endothelial growth factor receptor 1 (sVEGFR1), a preeclampsia biomarker, were elevated in first-time mothers with either PM, hypertension, or both, but levels were not elevated in other mothers with these conditions. In first-time mothers with PM, the inflammatory mediator vascular endothelial growth factor (VEGF) was localized to maternal macrophages in the placenta, while sVEGFR1, its soluble inhibitor, was localized to the fetal trophoblast. Conclusions The data suggest that maternal–fetal conflict involving the VEGF pathway occurs during PM, and that sVEGFR1 may be involved in the relationship between chronic PM and hypertension in first-time mothers. Because placental inflammation causes poor fetal outcomes, we hypothesize that fetal mechanisms that promote sVEGFR1 expression may be under selective pressure during first pregnancies in malaria-endemic areas.
References
[1]
Duffy PE, Fried M (2001) Malaria in pregnancy: Deadly parasite, susceptible host. London; New York: Taylor & Francis. 245 p.
[2]
Fried M, Duffy PE (1996) Adherence of to chondroitin sulfate A in the human placenta. Science 272: 1502–1504.
[3]
Fried M, Nosten F, Brockman A, Brabin BJ, Duffy PE (1998) Maternal antibodies block malaria. Nature 395: 851–852.
[4]
Duley L (1992) Maternal mortality associated with hypertensive disorders of pregnancy in Africa, Asia, Latin America and the Caribbean. Br J Obstet Gynaecol 99: 547–553.
[5]
Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308: 1592–1594.
[6]
Dechend R, Homuth V, Wallukat G, Muller DN, Krause M, et al. (2006) Agonistic antibodies directed at the angiotensin II, AT1 receptor in preeclampsia. J Soc Gynecol Investig 13: 79–86.
[7]
Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, et al. (1989) Preeclampsia: An endothelial cell disorder. Am J Obstet Gynecol 161: 1200–1204.
Haig D (1993) Genetic conflicts in human pregnancy. Q Rev Biol 68: 495–532.
[10]
Yuan HT, Haig D, Karumanchi SA (2005) Angiogenic factors in the pathogenesis of preeclampsia. Curr Top Dev Biol 71: 297–312.
[11]
Brabin BJ, Johnson PM (2005) Placental malaria and pre-eclampsia through the looking glass backwards? J Reprod Immunol 65: 1–15.
[12]
Wickramasuriya GAW (1936) Malaria and ankylostomiasis in the pregnant woman. London: Oxford University Press.
[13]
Bergstrom S, Povey G, Songane F, Ching C (1992) Seasonal incidence of eclampsia and its relationship to meteorological data in Mozambique. J Perinat Med 20: 153–158.
[14]
Crowther CA (1985) Eclampsia at Harare Maternity Hospital. An epidemiological study. S Afr Med J 68: 927–929.
[15]
Sartelet H, Rogier C, Milko-Sartelet I, Angel G, Michel G (1996) Malaria associated pre-eclampsia in Senegal. Lancet 347: 1121.
[16]
Wacker J, Schulz M, Fruhauf J, Chiwora FM, Solomayer E, et al. (1998) Seasonal change in the incidence of preeclampsia in Zimbabwe. Acta Obstet Gynecol Scand 77: 712–716.
[17]
Magnu P, Eskild A (2001) Seasonal variation in the occurrence of pre-eclampsia. Bjog 108: 1116–1119.
[18]
Dorman EK, Shulman CE, Kingdom J, Bulmer JN, Mwendwa J, et al. (2002) Impaired uteroplacental blood flow in pregnancies complicated by falciparum malaria. Ultrasound Obstet Gynecol 19: 165–170.
[19]
Shulman CE, Marshall T, Dorman EK, Bulmer JN, Cutts F, et al. (2001) Malaria in pregnancy: Adverse effects on haemoglobin levels and birthweight in primigravidae and multigravidae. Trop Med Int Health 6: 770–778.
[20]
Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, et al. (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350: 672–683.
[21]
Maynard SE, Min JY, Merchan J, Lim KH, Li J, et al. (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111: 649–658.
[22]
Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, et al. (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21: 60–65.
[23]
Deininger MH, Winkler S, Kremsner PG, Meyermann R, Schluesener HJ (2003) Angiogenic proteins in brains of patients who died with cerebral malaria. J Neuroimmunol 142: 101–111.
[24]
Mutabingwa TK, Bolla MC, Li JL, Domingo GJ, Li X, et al. (2005) Maternal malaria and gravidity interact to modify infant susceptibility to malaria. PLoS Med 2: e407.. doi:10.1371/journal.pmed.0020407.
[25]
Kaiser L, Tithof PK, Williams JF (1990) Depression of endothelium-dependent relaxation by filarial parasite products. Am J Physiol 259: H648–H652.
[26]
Ahmed A, Li XF, Dunk C, Whittle MJ, Rushton DI, et al. (1995) Colocalisation of vascular endothelial growth factor and its Flt-1 receptor in human placenta. Growth Factors 12: 235–243.
[27]
Shore VH, Wang TH, Wang CL, Torry RJ, Caudle MR, et al. (1997) Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta 18: 657–665.
[28]
Rajakumar A, Michael HM, Rajakumar PA, Shibata E, Hubel CA, et al. (2005) Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta 26: 563–573.
[29]
McLaren J, Prentice A, Charnock-Jones DS, Millican SA, Muller KH, et al. (1996) Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest 98: 482–489.
[30]
Perez-Ruiz M, Ros J, Morales-Ruiz M, Navasa M, Colmenero J, et al. (1999) Vascular endothelial growth factor production in peritoneal macrophages of cirrhotic patients: Regulation by cytokines and bacterial lipopolysaccharide. Hepatology 29: 1057–1063.
[31]
He Y, Smith SK, Day KA, Clark DE, Licence DR, et al. (1999) Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol 13: 537–545.
[32]
Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, et al. (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343.
[33]
Clauss M, Gerlach M, Gerlach H, Brett J, Wang F, et al. (1990) Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172: 1535–1545.
[34]
Shen H, Clauss M, Ryan J, Schmidt AM, Tijburg P, et al. (1993) Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood 81: 2767–2773.
[35]
Zhao Q, Egashira K, Inoue S, Usui M, Kitamoto S, et al. (2002) Vascular endothelial growth factor is necessary in the development of arteriosclerosis by recruiting/activating monocytes in a rat model of long-term inhibition of nitric oxide synthesis. Circulation 105: 1110–1115.
[36]
Wolf M, Shah A, Lam C, Martinez A, Smirnakis KV, et al. (2005) Circulating levels of the antiangiogenic marker sFLT-1 are increased in first versus second pregnancies. Am J Obstet Gynecol 193: 16–22.
[37]
Eskenazi B, Fenster L, Sidney S (1991) A multivariate analysis of risk factors for preeclampsia. JAMA 266: 237–241.
[38]
Knuist M, Bonsel GJ, Zondervan HA, Treffers PE (1998) Risk factors for preeclampsia in nulliparous women in distinct ethnic groups: A prospective cohort study. Obstet Gynecol 92: 174–178.
[39]
Naidoo DV, Moodley J (1980) A survey of hypertension in pregnancy at the King Edward VIII Hospital, Durban. S Afr Med J 58: 556–559.
[40]
Magee TP (1961) Socio-economic aspects of pre-eclampsia and eclampsia in the obstetric unit of the Colonial Hospital Port of Spain, Trinidad, West Indies. Pathol Microbiol 24: 504–506.
[41]
Olsen BE, Hinderaker SG, Bergsjo P, Lie RT, Olsen OH, et al. (2002) Causes and characteristics of maternal deaths in rural northern Tanzania. Acta Obstet Gynecol Scand 81: 1101–1109.