全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2006 

Elevated Serum Levels of Interferon-Regulated Chemokines Are Biomarkers for Active Human Systemic Lupus Erythematosus

DOI: 10.1371/journal.pmed.0030491

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN) in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity. Methods and Findings We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity. Conclusions These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus.

References

[1]  Wallace DJ (1997) The clinical presentation of systemic lupus erythematosus. In: Wallace DJ, Hahn BH, editors. Dubois' lupus erythematosus. 5th Ed. Baltimore (Maryland): Williams & Wilkins. pp. 627–633.
[2]  Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, et al. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100: 2610–2615.
[3]  Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, et al. (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197: 711–723.
[4]  Kirou KA, Lee C, George S, Louca K, Papagiannis IG, et al. (2004) Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum 50: 3958–3967.
[5]  Isaacs A, Lindenmann J (1957) Virus interference. 1 The interferon. Proc R Soc B 147: 258–273.
[6]  Theofilopoulos AN, Baccala R, Beutler B, Kono DH (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23: 307–336.
[7]  Ronnblom L, Alm GV (2001) A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med 194: F59–63.
[8]  Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, et al. (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301: 5–8.
[9]  Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294: 1540–1543.
[10]  Graham RR, Kozyrev SV, Baechler EC, Reddy MV, Plenge RM, et al. (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38: 550–555.
[11]  Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, et al. (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19: 225–234.
[12]  Petri M (2000) Hopkins lupus cohort. 1999 update. Rheum Dis Clin North Am 26: 199–213.
[13]  Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 35: 630–640.
[14]  Liang MH, Socher SA, Larson MG, Schur PH (1989) Reliability and validity of six systems for the clinical assessment of disease activity in systemic lupus erythematosus. Arthritis Rheum 32: 1107–1118.
[15]  Shao W, Zhou Z, Laroche I, Lu H, Zong Q, et al. (2003) Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J Biomed Biotechnol 2003: 299–307.
[16]  Perlee L, Christiansen J, Dondero R, Grimwade B, Lejnine S, et al. (2004) Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics. Proteome Sci 2: 9.
[17]  Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811–818.
[18]  Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868.
[19]  Zlotnik A, Yoshie O (2000) Chemokines: A new classification system and their role in immunity. Immunity 12: 121–127.
[20]  Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392: 565–568.
[21]  Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, et al. (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385–395.
[22]  Wang JM, McVicar DW, Oppenheim JJ, Kelvin DJ (1993) Identification of RANTES receptors on human monocytic cells: Competition for binding and desensitization by homologous chemotactic cytokines. J Exp Med 177: 699–705.
[23]  Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, et al. (1991) Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 147: 117–123.
[24]  Aringer M, Stummvoll GH, Steiner G, Koller M, Steiner CW, et al. (2001) Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology (Oxford) 40: 876–881.
[25]  Wong CK, Li EK, Ho CY, Lam CW (2000) Elevation of plasma interleukin-18 concentration is correlated with disease activity in systemic lupus erythematosus. Rheumatology (Oxford) 39: 1078–1081.
[26]  Wolf RE, Brelsford WG (1988) Soluble interleukin-2 receptors in systemic lupus erythematosus. Arthritis Rheum 31: 729–735.
[27]  Hoffman RW (2004) T cells in the pathogenesis of systemic lupus erythematosus. Clin Immunol 113: 4–13.
[28]  Noris M, Bernasconi S, Casiraghi F, Sozzanni S, Gotti E, et al. (1995) Monocyte chemoattractant protein-1 is excreted in excessive amounts in the urine of patients with lupus nephritis. Lab Invest 73: 804–809.
[29]  Wada T, Yokoyama H, Su SB, Mukaida N, Iwano M, et al. (1996) Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis. Kidney Int 49: 761–767.
[30]  Holcombe RF, Baethge BA, Wolf RE, Betzing KW, Stewart RM, et al. (1994) Correlation of serum interleukin-8 and cell surface lysosome-associated membrane protein expression with clinical disease activity in systemic lupus erythematosus. Lupus 3: 97–102.
[31]  Wada T, Yokohama H, Tomosugi N, Hisada Y, Ohta S, et al. (1994) Detection of urinary interleukin-8 in glomerular diseases. Kidney Int 46: 455–460.
[32]  Rovin BH, Song H, Birmingham DJ, Hebert LA, Yu CY, et al. (2005) Urine chemokines as biomarkers of human systemic lupus erythematosus activity. J Am Soc Nephrol 16: 467–473.
[33]  Hase K, Tani K, Shimizu T, Ohmoto Y, Matsushima K, et al. (2001) Increased CCR4 expression in active systemic lupus erythematosus. J Leukoc Biol 70: 749–755.
[34]  Yamada M, Yagita H, Inoue H, Takanashi T, Matsuda H, et al. (2002) Selective accumulation of CCR4+ T lymphocytes into renal tissue of patients with lupus nephritis. Arthritis Rheum 46: 735–740.
[35]  Kaneko H, Ogasawara H, Naito T, Akimoto H, Lee S, et al. (1999) Circulating levels of beta-chemokines in systemic lupus erythematosus. J Rheumatol 26: 568–573.
[36]  Narumi S, Takeuchi T, Kobayashi Y, Konishi K (2000) Serum levels of IFN-inducible protein-10 relating to the activity of systemic lupus erythematosus. Cytokine 12: 1561–1565.
[37]  Yajima N, Kasama T, Isozaki T, Odai T, Matsunawa M, et al. (2005) Elevated levels of soluble fractalkine in active systemic lupus erythematosus: Potential involvement in neuropsychiatric manifestations. Arthritis Rheum 52: 1670–1675.
[38]  Lit LC, Wong CK, Tam LS, Li EK, Lam CW (2006) Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann Rheum Dis 65: 209–215.
[39]  Meller S, Winterberg F, Gilliet M, Muller A, Lauceviciute I, et al. (2005) Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: An amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum 52: 1504–1516.
[40]  Wenzel J, Worenkamper E, Freutel S, Henze S, Haller O, et al. (2005) Enhanced type I interferon signalling promotes Th1-biased inflammation in cutaneous lupus erythematosus. J Pathol 205: 435–442.
[41]  Wenzel J, Henze S, Worenkamper E, Basner-Tschakarjan E, Sokolowska-Wojdylo M, et al. (2005) Role of the chemokine receptor CCR4 and its ligand thymus- and activation-regulated chemokine/CCL17 for lymphocyte recruitment in cutaneous lupus erythematosus. J Invest Dermatol 124: 1241–1248.
[42]  Grewal IS, Rutledge BJ, Fiorillo JA, Gu L, Gladue RP, et al. (1997) Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: Abrogation by a second transgene expressing systemic MCP-1. J Immunol 159: 401–408.
[43]  Jacobi AM, Odendahl M, Reiter K, Bruns A, Burmester GR, et al. (2003) Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 48: 1332–1342.
[44]  Cyster JG (2003) Homing of antibody secreting cells. Immunol Rev 194: 48–60.
[45]  Lee I, Wang L, Wells AD, Dorf ME, Ozkaynak E, et al. (2005) Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med 201: 1037–1044.
[46]  Shi K, Hayashida K, Kaneko M, Hashimoto J, Tomita T, et al. (2001) Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 166: 650–655.
[47]  Molon B, Gri G, Bettella M, Gomez-Mouton C, Lanzavecchia A, et al. (2005) T cell costimulation by chemokine receptors. Nat Immunol 6: 465–471.
[48]  Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111: 635–646.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133