全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2006 

Lipoprotein Particle Profiles Mark Familial and Sporadic Human Longevity

DOI: 10.1371/journal.pmed.0030495

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Genetic and biochemical studies have indicated an important role for lipid metabolism in human longevity. Ashkenazi Jewish centenarians and their offspring have large low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles as compared with control individuals. This profile also coincided with a lower prevalence of disease. Here, we investigate whether this observation can be confirmed for familial longevity in an outbred European population and whether it can be extended to sporadic longevity in the general population. Methods and Findings NMR-measured lipoprotein profiles were analyzed in 165 families from the Leiden Longevity Study, consisting of 340 long-lived siblings (females >91 y, males >89 y), 511 of their offspring, and 243 partners of the offspring. Offspring had larger (21.3 versus 21.1 nm; p = 0.020) and fewer (1,470 versus 1,561 nmol/l; p = 0.011) LDL particles than their same-aged partners. This effect was even more prominent in the long-lived siblings (p < 10?3) and could be pinpointed to a reduction specifically in the concentration of small LDL particles. No differences were observed for HDL particle phenotypes. The mean LDL particle sizes in 259 90-y-old singletons from a population-based study were similar to those in the long-lived siblings and thus significantly larger than in partners of the offspring, suggesting that the relevance of this phenotype extends beyond familial longevity. A low concentration of small LDL particles was associated with better overall health among both long-lived siblings (p = 0.003) and 90-y-old singletons (p = 0.007). Conclusions Our study indicates that LDL particle profiles mark both familial and sporadic human longevity already in middle age.

References

[1]  Sch?chter F, Cohen D, Kirkwood T (1993) Prospects for the genetics of human longevity. Hum Genet 91: 519–526.
[2]  Heijmans BT, Westendorp RGJ, Slagboom PE (2000) Common gene variants, mortality and extreme longevity in humans. Exp Gerontol 35: 865–877.
[3]  Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, et al. (2002) Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci U S A 99: 8442–8447.
[4]  Schoenmaker M, de Craen AJ, de Meijer PHEM, Beekman M, Blauw GJ, et al. (2006) Evidence of genetic enrichment for exceptional survival using a family approach. The Leiden Longevity Study. Eur J Hum Genet 14: 79–84.
[5]  Terry DF, Wilcox M, McCormick MA, Lawler E, Perls TT (2003) Cardiovascular advantages among the offspring of centenarians. J Gerontol A Biol Sci Med Sci 58: M425–M431.
[6]  Terry DF, Wilcox MA, McCormick MA, Pennington JY, Schoenhofen EA, et al. (2004) Lower all-cause, cardiovascular, and cancer mortality in centenarians' offspring. J Am Geriatr Soc 52: 2074–2076.
[7]  De Benedictis G, Falcone E, Rose G, Ruffolo R, Spadafora p, et al. (1997) DNA multiallelic systems reveal gene/longevity associations not detected by diallelic systems. The APOB locus. Hum Genet 99: 312–318.
[8]  Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, et al. (2003) Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290: 2030–2040.
[9]  Blake GJ, Otvos JD, Rifai N, Ridker PM (2002) Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation 106: 1930–1937.
[10]  Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace p, et al. (2003) Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52: 453–462.
[11]  Bootsma-van der Wiel A, van Exel E, de Craen AJ, Gussekloo J, Lagaay AM, et al. (2002) A high response is not essential to prevent selection bias: Results from the Leiden 85-plus study. J Clin Epidemiol 55: 1119–1125.
[12]  Mahony FI, Barthel DW (1965) Functional evaluation: The barthel index. Md State Med J 14: 61–65.
[13]  Fillenbaum GG, Smyer MA (1981) The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J Gerontol 36: 428–434.
[14]  Kempen GI, Miedema I, Ormel J, Molenaar W (1996) The assessment of disability with the Groningen Activity Restriction Scale. Conceptual framework and psychometric properties. Soc Sci Med 43: 1601–1610.
[15]  Otvos JD (2002) Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. Clin Lab 48: 171–180.
[16]  Diggle PJ, Liang KY, Zegers SL (1994) Analysis of longitudinal data. Oxford Statistical Science Series No. 13. Oxford: Oxford University Press.
[17]  Cellini E, Nacmias B, Olivieri F, Ortenzi L, Tedde A, et al. (2005) Cholesteryl ester transfer protein (CETP) I405V polymorphism and longevity in Italian centenarians. Mech Ageing Dev 126: 826–828.
[18]  Lada AT, Rudel LL (2004) Associations of low density lipoprotein particle composition with atherogenicity. Curr Opin Lipidol 15: 19–24.
[19]  Feingold KR, Grunfeld C, Pang M, Doerrler W, Krauss RM (1992) LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler Thromb 12: 1496–1502.
[20]  Cheng CL, Gao TQ, Wang Z, Li DD (2005) Role of insulin/insulin-like growth factor 1 signaling pathway in longevity. World J Gastroenterol 11: 1891–1895.
[21]  Brandt BW, Zwaan BJ, Beekman M, Westendorp RGJ, Slagboom PE (2005) Shuttling between species for pathways of lifespan regulation: a central role for the vitellogenin gene family? Bioessays 27: 339–346.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133