全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2006 

A Plant-Derived Morphinan as a Novel Lead Compound Active against Malaria Liver Stages

DOI: 10.1371/journal.pmed.0030513

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The global spread of multidrug–resistant malaria parasites has led to an urgent need for new chemotherapeutic agents. Drug discovery is primarily directed to the asexual blood stages, and few drugs that are effective against the obligatory liver stages, from which the pathogenic blood infection is initiated, have become available since primaquine was deployed in the 1950s. Methods and Findings Using bioassay-guided fractionation based on the parasite's hepatic stage, we have isolated a novel morphinan alkaloid, tazopsine, from a plant traditionally used against malaria in Madagascar. This compound and readily obtained semisynthetic derivatives were tested for inhibitory activity against liver stage development in vitro (P. falciparum and P. yoelii) and in vivo (P. yoelii). Tazopsine fully inhibited the development of P. yoelii (50% inhibitory concentration [IC50] 3.1 μM, therapeutic index [TI] 14) and P. falciparum (IC50 4.2 μM, TI 7) hepatic parasites in cultured primary hepatocytes, with inhibition being most pronounced during the early developmental stages. One derivative, N-cyclopentyl-tazopsine (NCP-tazopsine), with similar inhibitory activity was selected for its lower toxicity (IC50 3.3 μM, TI 46, and IC50 42.4 μM, TI 60, on P. yoelii and P. falciparum hepatic stages in vitro, respectively). Oral administration of NCP-tazopsine completely protected mice from a sporozoite challenge. Unlike the parent molecule, the derivative was uniquely active against Plasmodium hepatic stages. Conclusions A readily obtained semisynthetic derivative of a plant-derived compound, tazopsine, has been shown to be specifically active against the liver stage, but inactive against the blood forms of the malaria parasite. This unique specificity in an antimalarial drug severely restricts the pressure for the selection of drug resistance to a parasite stage limited both in numbers and duration, thus allowing researchers to envisage the incorporation of a true causal prophylactic in malaria control programs.

References

[1]  Lepers JP, Deloron P, Fontenille D, Coulanges P (1988) Reappearance of falciparum malaria in central highland plateaux of Madagascar. Lancet 1: 586.
[2]  Rasoanaivo P, Petitjean A, Ratsimamanga-Urverg S, Rakoto-Ratsimamanga A (1992) Medicinal plants used to treat malaria in Madagascar. J Ethnopharmacol 37: 117–127.
[3]  Rasoanaivo P, Ratsimamanga-Urverg S, Rakoto-Ratsimamanga A (1995) Isoquinoline alkaloid constituents of and (Menispermacea). Biochem Syst Ecol 23: 679–680.
[4]  Rasoanaivo P, Ratsimamanga-Urverg S, Rakoto-Ratsimamanga A, Raharisololalao A (1991) Constituants chimiques de trois espèces de Burasaia (Ménispermacées) endémiques de Madagascar. Biochem Syst Ecol 19: 433–437.
[5]  Boiteau P (1986) Précis de matière médicale Malgache. Paris: Agence de Coopération Culturelle et Technique. 141 p.
[6]  Mazier D, Franetich JF, Carraz M, Silvie O, Pino P (2004) Models for studying the effects of herbal antimalarials at different stages of the Plasmodium life cycle. In: Willcox M, Bodeker G, Rasoanaivo P, editors. Traditional medicines for modern times. Boca Raton (Florida): CRC Press. pp. 271–278.
[7]  Borch RF, Bernstein MD, Dupont Durst H (1971) The cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc 93: 2897–2904.
[8]  Rénia L, Mattei DM, Goma J, Pied S, Dubois P, et al. (1990) A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells. Eur J Immunol 20: 1445–1449.
[9]  Mazier D, Beaudoin RL, Mellouk S, Druilhe P, Texier B, et al. (1985) Complete development of hepatic stages of in vitro. Science 227: 440–442.
[10]  Zuang V (2001) The neutral red release assay: A review. Altern Lab Anim 29: 575–599.
[11]  Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193: 673–675.
[12]  Desjardins RE, Canfield CJ, Haynes JD, Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16: 710–718.
[13]  Witney AA, Doolan DL, Anthony RM, Weiss WR, Hoffman SL, et al. (2001) Determining liver stage parasite burden by real time quantitative PCR as a method for evaluating pre-erythrocytic malaria vaccine efficacy. Mol Biochem Parasitol 118: 233–245.
[14]  Marussig MS, Motard A, Rénia L, Baccam D, Le Bras J, et al. (1993) Activity of doxycycline against preerythrocytic malaria. J Infect Dis 168: 1603–1604.
[15]  Millet P, Landau I, Baccam D, Miltgen F, Peters W (1985) La culture des schizontes exo-érythrocytaires des Plasmodium de rongeurs dans des hépatocytes: Un nouveau modèle expérimental pour la chimiothérapie du paludisme. C R Acad Sci III 301: 403–406.
[16]  Hoffman SL, Rogers WO, Carucci DJ, Venter JC (1998) From genomics to vaccines: Malaria as a model system. Nat Med 4: 1351–1353.
[17]  Landau I, Gautret P (1998) Animal models: Rodents. In: Sherman IW, editor. Malaria parasite biology, pathogenesis, and protection. Washington (D. C.): ASM Press. pp. 401–417.
[18]  Peters W (1987) Chemotherapy and drug resistance in malaria. London: Academic Press. 1100 p.
[19]  Bejon P, Andrews L, Andersen RF, Dunachie S, Webster D, et al. (2005) Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J Infect Dis 191: 619–626.
[20]  Valecha N, Adak T, Bagga AK, Asthana OP, Srivastava JS, et al. (2001) Comparative antirelapse efficacy of CDRI compound 80/53 (Bulaquine) vs primaquine in double blind clinical trial. Curr Sci 80: 561–563.
[21]  Walsh DS, Wilairatana P, Tang DB, Heppner DG Jr, Brewer TG, et al. (2004) Randomized trial of 3-dose regimens of tafenoquine (WR238605) versus low-dose primaquine for preventing malaria relapse. Clin Infect Dis 39: 1095–1103.
[22]  Neerja J, Puri SK (2004) : Activity of azithromycin in combination with pyrimethamine or sulfadoxine against blood and sporozoite induced infections in Swiss mice. Exp Parasitol 107: 120–124.
[23]  Singh N, Puri SK (1998) Causal prophylactic activity of antihistaminic agents against Plasmodium yoelii nigeriensis infection in Swiss mice. Acta Trop 69: 255–260.
[24]  Lindenthal C, Weich N, Chia YS, Heussler V, Klinkert MQ (2005) The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic development of Plasmodium parasites. Parasitology 131: 37–44.
[25]  Puri SK, Dutta GP (1990) Quinoline esters as potential antimalarial drugs: Effect on relapses of infections in monkeys. Trans Roy Soc Trop Med Hyg 84: 759–760.
[26]  Guan J, Zhang Q, Montip G, Karle JM, Ditusa CA, et al. (2005) Structure identification and prophylactic antimalarial efficacy of 2-guanidinoimidazolidinedione derivatives. Bioorg Med Chem 13: 699–704.
[27]  Zhang Q, Guan J, Sacci JB Jr, Ager AL Jr, Ellis WY, et al. (2005) Unambiguous synthesis and prophylactic antimalarial activities of imidazolidinedione derivatives. J Med Chem 48: 6472–6481.
[28]  Gego A, Silvie O, Franetich JF, Farhati K, Hannoun L, et al. (2006) New approach for high-throughput screening of drug activity on Plasmodium liver stages. Antimicrob Agents Chemother 50: 1586–1589.
[29]  Schmidt LH, Coatney GR (1955) Review of the investigations in malaria chemotherapy (U.S.A.) 1946 to 1954. Am J Trop Med Hyg 4: 208–216.
[30]  Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, et al. (2004) Efficacy of the RTS,S/AS02A vaccine against infection and disease in young African children: Randomised controlled trial. Lancet 364: 1411–1420.
[31]  Snounou G, Grüner AC, Muller-Graf CD, Mazier D, Rénia L (2005) The Plasmodium sporozoite survives RTS,S vaccination. Trends Parasitol 21: 456–461.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133