全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2006 

Cost-Effectiveness of Male Circumcision for HIV Prevention in a South African Setting

DOI: 10.1371/journal.pmed.0030517

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Consistent with observational studies, a randomized controlled intervention trial of adult male circumcision (MC) conducted in the general population in Orange Farm (OF) (Gauteng Province, South Africa) demonstrated a protective effect against HIV acquisition of 60%. The objective of this study is to present the first cost-effectiveness analysis of the use of MC as an intervention to reduce the spread of HIV in sub-Saharan Africa. Methods and Findings Cost-effectiveness was modeled for 1,000 MCs done within a general adult male population. Intervention costs included performing MC and treatment of adverse events. HIV prevalence was estimated from published estimates and incidence among susceptible subjects calculated assuming a steady-state epidemic. Effectiveness was defined as the number of HIV infections averted (HIA), which was estimated by dynamically projecting over 20 years the reduction in HIV incidence observed in the OF trial, including secondary transmission to women. Net savings were calculated with adjustment for the averted lifetime duration cost of HIV treatment. Sensitivity analyses examined the effects of input uncertainty and program coverage. All results were discounted to the present at 3% per year. For Gauteng Province, assuming full coverage of the MC intervention, with a 2005 adult male prevalence of 25.6%, 1,000 circumcisions would avert an estimated 308 (80% CI 189–428) infections over 20 years. The cost is $181 (80% CI $117–$306) per HIA, and net savings are $2.4 million (80% CI $1.3 million to $3.6 million). Cost-effectiveness is sensitive to the costs of MC and of averted HIV treatment, the protective effect of MC, and HIV prevalence. With an HIV prevalence of 8.4%, the cost per HIA is $551 (80% CI $344–$1,071) and net savings are $753,000 (80% CI $0.3 million to $1.2 million). Cost-effectiveness improves by less than 10% when MC intervention coverage is 50% of full coverage. Conclusions In settings in sub-Saharan Africa with high or moderate HIV prevalence among the general population, adult MC is likely to be a cost-effective HIV prevention strategy, even when it has a low coverage. MC generates large net savings after adjustment for averted HIV medical costs.

References

[1]  UNAIDS (2004) 2004 report on the global HIV/AIDS epidemic: 4th global report. Geneva: UNAIDS. 236 p.
[2]  US Department of State, Office of the US Global AIDS Coordinator (2004) The President's emergency plan for AIDS relief. Available: http://www.state.gov/s/gac/. Accessed 1 March 2006.
[3]  World Health Organization (2004) Scaling up antiretroviral therapy in resource-limited settings: Treatment guidelines for a public health approach: 2003 revision. Geneva: World Health Organization. 68 p.
[4]  The Global Fund to fight AIDS, tuberculosis, and malaria (2005) A partnership to prevent and treat AIDS, tuberculosis, and malaria. Fact sheet, 21 January 2005. Available: http://www.theglobalfund.org/en/files/fa?ctsheets/progressreport.pdf. Accessed 1 March 2006.
[5]  UNAIDS (2005) AIDS Epidemic Update. Geneva: UNAIDS. 98 p.
[6]  Marshall N, Marseille E, Bertozzi S, Dandona L, Kahn JG (2004) A systematic, quantitative review of existing data on HIV prevention effectiveness and the link between program outputs and risk reduction [poster]. XV International AIDS Conference.
[7]  Stover J, Bertozzi S, Gutierrez JP, Walker N, Stanecki KA, et al. (2006) The global impact of scaling-up HIV/AIDS prevention programs in low- and middle-income countries. Science 311: 1474–1476.
[8]  Newman PA, Duan N, Rudy ET, Anton PA (2004) Challenges for HIV vaccine dissemination and clinical trial recruitment: If we build it, will they come? AIDS Patient Care STDS 18: 691–701.
[9]  Levy JA (2001) What can be achieved with an HIV vaccine? Lancet 357: 223–224.
[10]  Weiss HA, Quigley MA, Hayes RJ (2000) Male circumcision and risk of HIV infection in sub-Saharan Africa: A systematic review and meta-analysis. AIDS 14: 2361–2370.
[11]  Moses S, Bradley JE, Nagelkerke NJ, Ronald AR, Ndinya-Achola JO, et al. (1990) Geographical patterns of male circumcision practices in Africa: Association with HIV seroprevalence. Int J Epidemiol 19: 693–697.
[12]  Szabo R, Short RV (2000) How does male circumcision protect against HIV infection? BMJ 320: 1592–1594.
[13]  Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, et al. (2005) Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: The ANRS 1265 Trial. PLoS Med 2: e298.. doi:10.1371/journal.pmed.0020298.
[14]  Williams BG, Lloyd-Smith JO, Gouws E, Hankins C, Getz WM, et al. (2006) The potential impact of male circumcision on HIV in Sub-Saharan Africa. PLoS Med 3: e262.. doi:10.1371/journal.pmed.0030262.
[15]  Human Sciences Research Council (2002) Nelson Mandela/HSRC study of HIV/AIDS: South African national HIV prevalence, behavioural risks and mass media: Household survey 2002. Pretoria: Human Sciences Research Council. 156 p.
[16]  Schwartlander B, Stover J, Walker N, Bollinger L, Gutierrez JP, et al. (2001) Aids: Resource needs for HIV/AIDS. Science 292: 2434–2436.
[17]  UNAIDS (2005) Resource needs for an expanded response to AIDS in low and middle income countries–“Making the money work”: The three “ones” in action. Discussion paper 9. Geneva: UNAIDS. 39 p.
[18]  UNAIDS (2003) Progress report on the global response to the HIV/AIDS epidemic, 2003: Follow-up to the 2001 United Nations General Assembly Special Session on HIV/AIDS: Executive Summary. Geneva: UNAIDS. 104 p.
[19]  Creese A, Floyd K, Alban A, Guinness L (2002) Cost-effectiveness of HIV/AIDS interventions in Africa: A systematic review of the evidence. Lancet 359: 1635–1643.
[20]  Hogan DR, Baltussen R, Hayashi C, Lauer JA, Salomon JA (2005) Cost effectiveness analysis of strategies to combat HIV/AIDS in developing countries. BMJ 331: 1431–1437.
[21]  Soderlund N, Zwi K, Kinghorn A, Gray G (1999) Prevention of vertical transmission of HIV: Analysis of cost effectiveness of options available in South Africa. BMJ 318: 1650–1656.
[22]  Wilkinson D, Floyd K, Gilks CF (1998) Antiretroviral drugs as a public health intervention for pregnant HIV-infected women in rural South Africa: An issue of cost-effectiveness and capacity. AIDS 12: 1675–1682.
[23]  Wilkinson D, Floyd K, Gilks CF (2000) National and provincial estimated costs and cost effectiveness of a programme to reduce mother-to-child HIV transmission in South Africa. S Afr Med J 90: 794–798.
[24]  Skordis J, Nattrass N (2002) Paying to waste lives: The affordability of reducing mother-to-child transmission of HIV in South Africa. J Health Econ 21: 405–421.
[25]  Boulle A, Kenyon C, Skordis J, Wood R (2002) Exploring the costs of a limited public sector antiretroviral treatment programme in South Africa. S Afr Med J 92: 811–817.
[26]  Kenyon C, Skordis J, Boulle A, Pillay K (2003) The ART of rationing–the need for a new approach to rationing health interventions. S Afr Med J 93: 56–60.
[27]  Cleary SBA, McIntyre D, Coetzee D (2004) Cost-effectiveness of antiretroviral treatment for HIV positive adults in a South African Township. Durban: Health Systems Trust. 58 p.
[28]  Marseille E, Kahn JG, Billinghurst K, Saba J (2001) Cost-effectiveness of the female condom in preventing HIV and STDs in commercial sex workers in rural South Africa. Soc Sci Med 52: 135–148.
[29]  Wilkinson D, Floyd K, Gilks CF (2000) National and provincial estimated costs and cost effectiveness of a programme to reduce mother-to-child HIV transmission in South Africa. S Afr Med J 90: 794–798.
[30]  Soorapanth S, Sansom S, Bulterys M, Besser M, Theron G, et al. (2006) Cost-effectiveness of HIV rescreening during late pregnancy to prevent mother-to-child HIV transmission in South Africa and other resource-limited settings. J Acquir Immune Defic Syndr 42: 213–221.
[31]  Harrison A, Karim SA, Floyd K, Lombard C, Lurie M, et al. (2000) Syndrome packets and health worker training improve sexually transmitted disease case management in rural South Africa: Randomized controlled trial. AIDS 14: 2769–2779.
[32]  Vickerman P, Terris-Prestholt F, Delany S, Kumaranayake L, Rees H, et al. (2006) Are targeted HIV prevention activities still cost-effective in high prevalence settings? Results from an STI treatment intervention for sex workers in Hillbrow, South Africa. Sex Transm Dis 33(Suppl 10): S122–S132.
[33]  Atashili J (2006) Adult male circumcision to prevent HIV? Int J Infect Dis 10: 202–205.
[34]  Bonner K (2001) Male circumcision as an HIV control strategy: Not a “natural condom”. Reprod Health Matters 9: 143–155.
[35]  Hunter DJ, Maggwa BN, Mati JK, Tukei PM, Mbugua S (1994) Sexual behavior, sexually transmitted diseases, male circumcision and risk of HIV infection among women in Nairobi, Kenya. AIDS 8: 93–99.
[36]  Gold M, Siegel JE, Russell LB, Weinstein MC, editors. (1996) Cost-effectiveness in health and medicine. New York: Oxford University Press. 425 p.
[37]  Drummond MF, O'Brien B, Stoddart GL, Torrance GW (1997) Methods for the economic evaluation of health care programmes. Oxford: Oxford Medical Publications. 305 p.
[38]  Krieger JN, Bailey RC, Opeya J, Ayieko B, Opiyo F, et al. (2005) Adult male circumcision: Results of a standardized procedure in Kisumu District, Kenya. BJU Int 96: 1109–1113.
[39]  Cleary S, Boulle A, McIntyre D, Coetzee D (2004) Cost-effectiveness of antiretroviral treatment for HIV-positive adults in a South African township. Cape Town: Médecins Sans Frontières, Health Systems Trust, University of Capetown. 67 p.
[40]  Dorrington RE, Bradshaw D, Budlender D (2002) HIV/AIDS profile of the provinces of South Africa—Indicators for 2002. Centre for Actuarial Research, Medical Research Council and the Actuarial Society of South Africa. Capetown (South Africa): 31 p.
[41]  Pinkerton SD, Abramson PR (1996) Occasional condom use and HIV risk reduction. J Acquir Immune Defic Syndr Hum Retrovirol 13: 456–460.
[42]  Cassell MM, Halperin DT, Shelton JD, Stanton D (2006) Risk compensation: The Achilles' heel of innovations in HIV prevention? BMJ 332: 605–607.
[43]  Auvert B, Buve A, Lagarde E, Kahindo M, Chege J, et al. (2001) Male circumcision and HIV infection in four cities in sub-Saharan Africa. AIDS 15 Suppl 4: S31–40.
[44]  Bailey RC, Neema S, Othieno R (1999) Sexual behaviors and other HIV risk factors in circumcised and uncircumcised men in Uganda. J Acquir Immune Defic Syndr 22: 294–301.
[45]  Marseille E, Saba J, Muyingo S, Kahn JG (2006) The costs and benefits of private sector provision of treatment to HIV-infected employees in Kampala, Uganda. AIDS 20: 907–914.
[46]  Murray CJ, Lopez AD, editors. (1996) The global burden of disease: A comprehensive assessment of the mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Cambridge: Harvard University Press. 990 p.
[47]  Murray CJ (1994) Quantifying the burden of disease: The technical basis for disability-adjusted life years. Bull World Health Organ 72: 429–445.
[48]  Bell JC, Rose DN, Sacks HS (1999) Tuberculosis preventive therapy for HIV-infected people in sub-Saharan Africa is cost-effective. AIDS 13: 1549–1556.
[49]  Yazdanpanah Y, Losina E, Anglaret X, Goldie SJ, Walensky RP, et al. (2005) Clinical impact and cost-effectiveness of co-trimoxazole prophylaxis in patients with HIV/AIDS in Cote d'Ivoire: A trial-based analysis. AIDS 19: 1299–1308.
[50]  Bachmann MO (2006) Effectiveness and cost effectiveness of early and late prevention of HIV/AIDS progression with antiretrovirals or antibiotics in Southern African adults. AIDS Care 18: 109–120.
[51]  Korenromp EL, White RG, Orroth KK, Bakker R, Kamali A, et al. (2005) Determinants of the impact of sexually transmitted infection treatment on prevention of HIV infection: A synthesis of evidence from the Mwanza, Rakai, and Masaka intervention trials. J Infect Dis 191 Suppl 1: S168–178.
[52]  Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, et al., editors. (2006) Disease control priorities in developing countries. 2nd edition. New York: Oxford University Press. 1394 p.
[53]  Lagarde E, Dirk T, Puren A, Reathe RT, Bertran A (2003) Acceptability of male circumcision as a tool for preventing HIV infection in a highly infected community in South Africa. AIDS 17: 89–95.
[54]  Kebaabetswe P, Lockman S, Mogwe S, Mandevu R, Thior I, et al. (2003) Male circumcision: An acceptable strategy for HIV prevention in Botswana. Sex Transm Infect 79: 214–219.
[55]  Mattson CL, Bailey RC, Muga R, Poulussen R, Onyango T (2005) Acceptability of male circumcision and predictors of circumcision preference among men and women in Nyanza Province, Kenya. AIDS Care 17: 182–194.
[56]  Halperin DT, Fritz K, McFarland W, Woelk G (2005) Acceptability of adult male circumcision for sexually transmitted disease and HIV prevention in Zimbabwe. Sex Transm Dis 32: 238–239.
[57]  Kim DS, Lee JY, Pang MG (1999) Male circumcision: A South Korean perspective. BJU Int 83 Suppl 1: 28–33.
[58]  Monteoro-Ferreira A (2005) Reevaluating Zulu religion: An Afro-centric analysis. J Black Stud 35: 347–363.
[59]  Rogers E (1995) Diffusion of innovations. New York: The Free Press. 519 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133