全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2006 

Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants

DOI: 10.1371/journal.pmed.0030525

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. Methods and Findings Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV–challenged mice. VRP-N–induced pathology presented at day 4, peaked around day 7, and persisted through day 14, and was likely mediated by cellular immune responses. Conclusions This study identifies gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations. The availability of a SARS-CoV virus bearing heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine efficacy against zoonotic strains, the most likely source of future outbreaks.

References

[1]  Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, et al. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976.
[2]  Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348: 1953–1966.
[3]  Han Y, Geng H, Feng W, Tang X, Ou A, et al. (2003) A follow-up study of 69 discharged SARS patients. J Tradit Chin Med 23: 214–217.
[4]  Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, et al. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102: 14040–14045.
[5]  Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, et al. (2005) Identification of a novel coronavirus in bats. J Virol 79: 2001–2009.
[6]  Li W, Shi Z, Yu M, Ren W, Smith C, et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676–679.
[7]  Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, et al. (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302: 276–278.
[8]  The Chinese SARS Molecular Epidemiology Consortium (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303: 1666–1669.
[9]  Normile D (2004) Infectious diseases. Mounting lab accidents raise SARS fears. Science 304: 659–661.
[10]  Wang Z, Yuan Z, Matsumoto M, Hengge UR, Chang YF (2005) Immune responses with DNA vaccines encoded different gene fragments of severe acute respiratory syndrome coronavirus in BALB/c mice. Biochem Biophys Res Commun 327: 130–135.
[11]  He Y, Zhou Y, Siddiqui P, Jiang S (2004) Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun 325: 445–452.
[12]  Takasuka N, Fujii H, Takahashi Y, Kasai M, Morikawa S, et al. (2004) A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol 16: 1423–1430.
[13]  Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, et al. (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561–564.
[14]  Zhao P, Ke JS, Qin ZL, Ren H, Zhao LJ, et al. (2004) DNA vaccine of SARS-Cov S gene induces antibody response in mice. Acta Biochim Biophys Sin (Shanghai) 36: 37–41.
[15]  Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, et al. (2004) Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A 101: 9804–9809.
[16]  Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, et al. (2004) Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101: 6641–6646.
[17]  Kapadia SU, Rose JK, Lamirande E, Vogel L, Subbarao K, et al. (2005) Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 340: 174–182.
[18]  Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, et al. (2004) Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363: 2122–2127.
[19]  See RH, Zakhartchouk AN, Petric M, Lawrence DJ, Mok CP, et al. (2006) Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol 87: 641–650.
[20]  Stadler K, Roberts A, Becker S, Vogel L, Eickmann M, et al. (2005) SARS vaccine protective in mice. Emerg Infect Dis 11: 1312–1314.
[21]  Spruth M, Kistner O, Savidis-Dacho H, Hitter E, Crowe B, et al. (2006) A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine 24: 652–661.
[22]  Ishii K, Hasegawa H, Nagata N, Mizutani T, Morikawa S, et al. (2006) Induction of protective immunity against severe acute respiratory syndrome coronavirus (SARS-CoV) infection using highly attenuated recombinant vaccinia virus DIs. Virology 351: 368–380.
[23]  Yount B, Roberts RS, Lindesmith L, Baric RS (2006) Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome. Proc Natl Acad Sci U S A 103: 12546–12551.
[24]  Qiu M, Shi Y, Guo Z, Chen Z, He R, et al. (2005) Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect 7: 882–889.
[25]  Saif LJ (2004) Animal coronavirus vaccines: Lessons for SARS. Dev Biol (Basel) 119: 129–140.
[26]  Zhu MS, Pan Y, Chen HQ, Shen Y, Wang XC, et al. (2004) Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett 92: 237–243.
[27]  Qin C, Wang J, Wei Q, She M, Marasco WA, et al. (2005) An animal model of SARS produced by infection of with SARS coronavirus. J Pathol 206: 251–259.
[28]  Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, et al. (2004) Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78: 3572–3577.
[29]  Olsen CW, Corapi WV, Ngichabe CK, Baines JD, Scott FW (1992) Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J Virol 66: 956–965.
[30]  Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, et al. (2004) Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol 78: 12672–12676.
[31]  Yang ZY, Werner HC, Kong WP, Leung K, Traggiai E, et al. (2005) Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci U S A 102: 797–801.
[32]  Roberts A, Paddock C, Vogel L, Butler E, Zaki S, et al. (2005) Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol 79: 5833–5838.
[33]  Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, et al. (2005) Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol 79: 15511–15524.
[34]  Davis NL, Caley IJ, Brown KW, Betts MR, Irlbeck DM, et al. (2000) Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol 74: 371–378.
[35]  Heise MT, Simpson DA, Johnston RE (2000) A single amino acid change in nsP1 attenuates neurovirulence of the Sindbis-group alphavirus S.A.AR86. J Virol 74: 4207–4213.
[36]  Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500.
[37]  Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
[38]  Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: 275–282.
[39]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
[40]  Chen Z, Zhang L, Qin C, Ba L, Yi CE, et al. (2005) Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol 79: 2678–2688.
[41]  Faber M, Lamirande EW, Roberts A, Rice AB, Koprowski H, et al. (2005) A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. J Gen Virol 86: 1435–1440.
[42]  Chou TH, Wang S, Sakhatskyy PV, Mboudoudjeck I, Lawrence JM, et al. (2005) Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 334: 134–143.
[43]  He Y, Zhu Q, Liu S, Zhou Y, Yang B, et al. (2005) Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines. Virology 334: 74–82.
[44]  Keng CT, Zhang A, Shen S, Lip KM, Fielding BC, et al. (2005) Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J Virol 79: 3289–3296.
[45]  Wang S, Chou TH, Sakhatskyy PV, Huang S, Lawrence JM, et al. (2005) Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J Virol 79: 1906–1910.
[46]  Sui J, Li W, Murakami A, Tamin A, Matthews LJ, et al. (2004) Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A 101: 2536–2541.
[47]  Greenough TC, Babcock GJ, Roberts A, Hernandez HJ, Thomas WD Jr., et al. (2005) Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis 191: 507–514.
[48]  Duan J, Yan X, Guo X, Cao W, Han W, et al. (2005) A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem Biophys Res Commun 333: 186–193.
[49]  Tripp RA, Haynes LM, Moore D, Anderson B, Tamin A, et al. (2005) Monoclonal antibodies to SARS-associated coronavirus (SARS-CoV): Identification of neutralizing and antibodies reactive to S, N, M and E viral proteins. J Virol Methods 128: 21–28.
[50]  Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, et al. (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100: 12995–13000.
[51]  Davis NL, West A, Reap E, MacDonald G, Collier M, et al. (2002) Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 53: 209–211.
[52]  Zhang JS, Chen JT, Liu YX, Zhang ZS, Gao H, et al. (2005) A serological survey on neutralizing antibody titer of SARS convalescent sera. J Med Virol 77: 147–150.
[53]  Chu CM, Poon LL, Cheng VC, Chan KS, Hung IF, et al. (2004) Initial viral load and the outcomes of SARS. CMAJ 171: 1349–1352.
[54]  Hung IF, Cheng VC, Wu AK, Tang BS, Chan KH, et al. (2004) Viral loads in clinical specimens and SARS manifestations. Emerg Infect Dis 10: 1550–1557.
[55]  Hancock GE, Speelman DJ, Heers K, Bortell E, Smith J, et al. (1996) Generation of atypical pulmonary inflammatory responses in BALB/c mice after immunization with the native attachment (G) glycoprotein of respiratory syncytial virus. J Virol 70: 7783–7791.
[56]  De Swart RL, Kuiken T, Timmerman HH, van Amerongen G, Van Den Hoogen BG, et al. (2002) Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J Virol 76: 11561–11569.
[57]  Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, et al. (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89: 422–434.
[58]  Liu SJ, Leng CH, Lien SP, Chi HY, Huang CY, et al. (2006) Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates. Vaccine 24: 3100–3108.
[59]  Kim TW, Lee JH, Hung CF, Peng S, Roden R, et al. (2004) Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 78: 4638–4645.
[60]  Xiong S, Wang YF, Zhang MY, Liu XJ, Zhang CH, et al. (2004) Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett 95: 139–143.
[61]  Zakhartchouk AN, Liu Q, Petric M, Babiuk LA (2005) Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine 23: 4385–4391.
[62]  Johnson TR, Varga SM, Braciale TJ, Graham BS (2004) Vbeta14(+) T cells mediate the vaccine-enhanced disease induced by immunization with respiratory syncytial virus (RSV) G glycoprotein but not with formalin-inactivated RSV. J Virol 78: 8753–8760.
[63]  Radun D, Niedrig M, Ammon A, Stark K (2003) SARS: Retrospective cohort study among German guests of the Hotel ‘M', Hong Kong. Euro Surveill 8: 228–230.
[64]  Skowronski DM, Astell C, Brunham RC, Low DE, Petric M, et al. (2005) Severe acute respiratory syndrome (SARS): A year in review. Annu Rev Med 56: 357–381.
[65]  Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science 297: 1016–1018.
[66]  Smith HO, Hutchison CA 3rd, Pfannkoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A 100: 15440–15445.
[67]  Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P, et al. (2004) Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431: 703–707.
[68]  Srikantiah P, Charles MD, Reagan S, Clark TA, Pletz MW, et al. (2005) SARS clinical features, United States, 2003. Emerg Infect Dis 11: 135–138.
[69]  Murasko DM, Bernstein ED, Gardner EM, Gross P, Munk G, et al. (2002) Role of humoral and cell-mediated immunity in protection from influenza disease after immunization of healthy elderly. Exp Gerontol 37: 427–439.
[70]  Herrera E, Martinez AC, Blasco MA (2000) Impaired germinal center reaction in mice with short telomeres. Embo J 19: 472–481.
[71]  Zheng B, Han S, Takahashi Y, Kelsoe G (1997) Immunosenescence and germinal center reaction. Immunol Rev 160: 63–77.
[72]  Frasca D, Riley RL, Blomberg BB (2005) Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol 17: 378–384.
[73]  Song H, Price PW, Cerny J (1997) Age-related changes in antibody repertoire: Contribution from T cells. Immunol Rev 160: 55–62.
[74]  McElhaney JE (2005) The unmet need in the elderly: Designing new influenza vaccines for older adults. Vaccine 23: S10–S25.
[75]  Frech SA, Kenney RT, Spyr CA, Lazar H, Viret J-F, et al. (2005) Improved immune responses to influenza vaccination in the elderly using an immunostimulant patch. Vaccine 23: 946–950.
[76]  He Y, Li J, Li W, Lustigman S, Farzan M, et al. (2006) Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein. J Immunol 176: 6085–6092.
[77]  Couch RB (2003) An overview of serum antibody responses to influenza virus antigens. Dev Biol (Basel) 115: 25–30.
[78]  LoBue AD, Lindesmith L, Yount B, Harrington PR, Thompson JM, et al. (2006) Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24: 5220–5234.
[79]  Subbarao K, Roberts A (2006) Is there an ideal animal model for SARS? Trends Microbiol 14: 299–303.
[80]  (1995) From the Centers for Disease Control and Prevention. Pneumonia and influenza death rates—United States, 1979–1994. JAMA 274: 532.
[81]  Murray K, Baraniuk S, Resnick M, Arafat R, Kilborn C, et al. (2006) Risk factors for encephalitis and death from West Nile virus infection. Epidemiol Infect. pp. 1–8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133