全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2007 

HIV Patients Developing Primary CNS Lymphoma Lack EBV-Specific CD4+ T Cell Function Irrespective of Absolute CD4+ T Cell Counts

DOI: 10.1371/journal.pmed.0040096

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background In chronic HIV infection, antiretroviral therapy–induced normalization of CD4+ T cell counts (immune reconstitution [IR]) is associated with a decreased incidence of opportunistic diseases. However, some individuals remain at risk for opportunistic diseases despite prolonged normalization of CD4+ T cell counts. Deficient Epstein-Barr virus (EBV)-specific CD4+ T cell function may explain the occurrence of EBV-associated opportunistic malignancy—such as primary central nervous system (PCNS) lymphoma—despite recovery of absolute CD4+ T cell counts. Methods and Findings Absolute CD4+ T cell counts and EBV-specific CD4+ T cell-dependent interferon-γ production were assessed in six HIV-positive individuals prior to development of PCNS lymphoma (“cases”), and these values were compared with those in 16 HIV-infected matched participants with no sign of EBV-associated pathology (“matched controls”) and 11 nonmatched HIV-negative blood donors. Half of the PCNS lymphoma patients fulfilled IR criteria (defined here as CD4+ T cell counts ≥500/μl blood). EBV-specific CD4+ T cells were assessed 0.5–4.7 y prior to diagnosis of lymphoma. In 0/6 cases versus 13/16 matched controls an EBV-specific CD4+ T cell response was detected (p = 0.007; confidence interval for odds ratio [0–0.40]). PCNS lymphoma patients also differed with regards to this response significantly from HIV-negative blood donors (p < 0.001, confidence interval for odds ratio [0–0.14]), but there was no evidence for a difference between HIV-negative participants and the HIV-positive matched controls (p = 0.47). Conclusions Irrespective of absolute CD4+ T cell counts, HIV-positive patients who subsequently developed PCNS lymphoma lacked EBV-specific CD4+ T cell function. Larger, ideally prospective studies are needed to confirm these preliminary data, and clarify the impact of pathogen-specific versus surrogate marker-based assessment of IR on clinical outcome.

References

[1]  Stein DS, Korvick JA, Vermund SH (1992) CD4+ lymphocyte cell enumeration for prediction of clinical course of human immunodeficiency virus disease: A review. J Infect Dis 165: 352–363.
[2]  Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, et al. (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434: 1093–1097.
[3]  Gates AE, Kaplan LD (2002) AIDS malignancies in the era of highly active antiretroviral therapy. Oncology 16: 441–451.
[4]  Hoffmann C, Tabrizian S, Wolf E, Eggers C, Stoehr A, et al. (2001) Survival of AIDS patients with primary central nervous system lymphoma is dramatically improved by HAART-induced immune recovery. AIDS 15: 2119–2127.
[5]  Osmond DH, Buchbinder S, Cheng A, Graves A, Vittinghoff E, et al. (2002) Prevalence of Kaposi sarcoma-associated herpesvirus infection in homosexual men at beginning of and during the HIV epidemic. JAMA 287: 221–225.
[6]  Thirlwell C, Sarker D, Stebbing J, Bower M (2003) Acquired immunodeficiency syndrome-related lymphoma in the era of highly active antiretroviral therapy. Clin Lymphoma 4: 86–92.
[7]  Clifford GM, Polesel J, Rickenbach M, Dal Maso L, Keiser O, et al. (2005) Cancer risk in the Swiss HIV Cohort Study: Associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst 97: 425–432.
[8]  Bower M, Powles T, Nelson M, Mandalia S, Gazzard B, et al. (2006) Highly active antiretroviral therapy and human immunodeficiency virus-associated primary cerebral lymphoma. J Natl Cancer Inst 98: 1088–1091.
[9]  Diamond C, Taylor TH, Aboumrad T, Anton-Culver H (2006) Changes in acquired immunodeficiency syndrome-related non-Hodgkin lymphoma in the era of highly active antiretroviral therapy: Incidence, presentation, treatment, and survival. Cancer 106: 128–135.
[10]  Battegay M, Nuesch R, Hirschel B, Kaufmann GR (2006) Immunological recovery and antiretroviral therapy in HIV-1 infection. Lancet Infect Dis 6: 280–287.
[11]  Woodberry T, Suscovich TJ, Henry LM, Davis JK, Frahm N, et al. (2005) Differential targeting and shifts in the immunodominance of Epstein-Barr virus-specific CD8 and CD4 T cell responses during acute and persistent infection. J Infect Dis 192: 1513–1524.
[12]  Bihl FK, Loggi E, Chisholm JV 3rd, Hewitt HS, Henry LM, et al. (2005) Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti-CD3 mAb T-cell expansion and “RecycleSpot”. J Transl Med 3: 20.
[13]  Amyes E, Hatton C, Montamat-Sicotte D, Gudgeon N, Rickinson AB, et al. (2003) Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J Exp Med 198: 903–911.
[14]  Camilleri-Broet S, Davi F, Feuillard J, Seilhean D, Michiels JF, et al. (1997) AIDS-related primary brain lymphomas: Histopathologic and immunohistochemical study of 51 cases. The French Study Group for HIV-Associated Tumors. Hum Pathol 28: 367–374.
[15]  Newell ME, Hoy JF, Cooper SG, DeGraaff B, Grulich AE, et al. (2004) Human immunodeficiency virus-related primary central nervous system lymphoma: Factors influencing survival in 111 patients. Cancer 100: 2627–2636.
[16]  Komanduri KV, Feinberg J, Hutchins RK, Frame RD, Schmidt DK, et al. (2001) Loss of cytomegalovirus-specific CD4+ T cell responses in human immunodeficiency virus type 1-infected patients with high CD4+ T cell counts and recurrent retinitis. J Infect Dis 183: 1285–1289.
[17]  Cardine S, Kirch O, Labetoulle M, Offret H, Frau E (2001) Cytomegalovirus retinitis despite normal CD4 levels in an HIV patient. Report of a case. J Fr Ophtalmol 24: 971–974.
[18]  Thomson RM, Conrad D, Antoszewska H, Croxson MC, McCormack JG (1998) Cytomegalovirus retinitis, human immunodeficiency virus antibody positivity and normal T helper cell numbers. J Infect 37: 186–188.
[19]  Valdez H (2002) Immune restoration after treatment of HIV-1 infection with highly active antiretroviral therapy (HAART). AIDS Rev 4: 157–164.
[20]  Crothers K, Huang L (2003) Recurrence of pneumonia in an HIV-infected patient: apparent selective immune reconstitution after initiation of antiretroviral therapy. HIV Med 4: 346–349.
[21]  Nikiforow S, Bottomly K, Miller G (2001) CD4+ T-cell effectors inhibit Epstein-Barr virus-induced B-cell proliferation. J Virol 75: 3740–3752.
[22]  Nikiforow S, Bottomly K, Miller G, Munz C (2003) Cytolytic CD4+-T-cell clones reactive to EBNA1 inhibit Epstein-Barr virus-induced B-cell proliferation. J Virol 77: 12088–12104.
[23]  Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, et al. (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421: 852–856.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133