全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2007 

Isoform-Specific Potentiation of Stem and Progenitor Cell Engraftment by AML1/RUNX1

DOI: 10.1371/journal.pmed.0040172

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. Methods and Findings The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. Conclusions These data demonstrate that the “a” isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting.

References

[1]  Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, et al. (1991) t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A 88: 10431–10434.
[2]  Ito Y (2004) Oncogenic potential of the RUNX gene family: “Overview”. Oncogene 23: 4198–4208.
[3]  Speck NA, Gilliland DG (2002) Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2: 502–513.
[4]  North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, et al. (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16: 661–672.
[5]  Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.
[6]  Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, et al. (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93: 3444–3449.
[7]  Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, et al. (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10: 299–304.
[8]  Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, et al. (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106: 494–504.
[9]  Putz G, Rosner A, Nuesslein I, Schmitz N, Buchholz F (2006) AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene 25: 929–939.
[10]  Friedman AD (1999) Leukemogenesis by CBF oncoproteins. Leukemia 13: 1932–1942.
[11]  Blyth K, Cameron ER, Neil JC (2005) The RUNX genes: Gain or loss of function in cancer. Nat Rev Cancer 5: 376–387.
[12]  Levanon D, Groner Y (2004) Structure and regulated expression of mammalian RUNX genes. Oncogene 23: 4211–4219.
[13]  Bae SC, Ogawa E, Maruyama M, Oka H, Satake M, et al. (1994) PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol 14: 3242–3252.
[14]  Zhang YW, Bae SC, Huang G, Fu YX, Lu J, et al. (1997) A novel transcript encoding an N-terminally truncated AML1/PEBP2 alphaB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells. Mol Cell Biol 17: 4133–4145.
[15]  Fujita Y, Nishimura M, Taniwaki M, Abe T, Okuda T (2001) Identification of an alternatively spliced form of the mouse AML1/RUNX1 gene transcript AML1c and its expression in early hematopoietic development. Biochem Biophys Res Commun 281: 1248–1255.
[16]  Cantor AB, Orkin SH (2002) Transcriptional regulation of erythropoiesis: An affair involving multiple partners. Oncogene 21: 3368–3376.
[17]  Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, et al. (2002) Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32: 148–152.
[18]  Xu G, Nagano M, Kanezaki R, Toki T, Hayashi Y, et al. (2003) Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood 102: 2960–2968.
[19]  Calkhoven CF, Muller C, Martin R, Krosl G, Pietsch H, et al. (2003) Translational control of SCL-isoform expression in hematopoietic lineage choice. Genes Dev 17: 959–964.
[20]  Sasaki K, Nakamura Y, Maki K, Waga K, Nakamura F, et al. (2004) Functional analysis of a dominant-negative DeltaETS TEL/ETV6 isoform. Biochem Biophys Res Commun 317: 1128–1137.
[21]  Tonnelle C, Bardin F, Maroc C, Imbert AM, Campa F, et al. (2001) Forced expression of the Ikaros 6 isoform in human placental blood CD34+ cells impairs their ability to differentiate toward the B-lymphoid lineage. Blood 98: 2673–2680.
[22]  Sun L, Goodman PA, Wood CM, Crotty ML, Sensel M, et al. (1999) Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 17: 3753–3766.
[23]  Nakase K, Ishimaru F, Avitahl N, Dansako H, Matsuo K, et al. (2000) Dominant negative isoform of the Ikaros gene in patients with adult B-cell acute lymphoblastic leukemia. Cancer Res 60: 4062–4065.
[24]  Yagi T, Hibi S, Takanashi M, Kano G, Tabata Y, et al. (2002) High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: Implications for up-regulation of the antiapoptotic protein Bcl-XL in leukemogenesis. Blood 99: 1350–1355.
[25]  Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, et al. (1995) Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res 23: 2762–2769.
[26]  Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, et al. (1995) An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. Embo J 14: 341–350.
[27]  Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2004) Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104: 1474–1481.
[28]  Harada H, Harada Y, Niimi H, Kyo T, Kimura A, et al. (2004) High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103: 2316–2324.
[29]  Osato M (2004) Point mutations in the RUNX1/AML1 gene: Another actor in RUNX leukemia. Oncogene 23: 4284–4296.
[30]  Persons DA, Allay JA, Allay ER, Ashmun RA, Orlic D, et al. (1999) Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93: 488–499.
[31]  Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, et al. (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416: 94–99.
[32]  Tsuzuki S, Seto M, Greaves M, Enver T (2004) Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci U S A 101: 8443–8448.
[33]  Freyssinier JM, Lecoq-Lafon C, Amsellem S, Picard F, Ducrocq R, et al. (1999) Purification, amplification and characterization of a population of human erythroid progenitors. Br J Haematol 106: 912–922.
[34]  O'Connell J, Houston A, Kelly R, O'Brien D, Ryan A, et al. (2002) Rapid development of a quantitative-competitive (qc) RT-PCR assay using a composite primer approach. Methods Mol Biol 193: 93–102.
[35]  Kasugai Y, Tagawa H, Kameoka Y, Morishima Y, Nakamura S, et al. (2005) Identification of CCND3 and BYSL as candidate targets for the 6p21 amplification in diffuse large B-cell lymphoma. Clin Cancer Res 11: 8265–8272.
[36]  Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, et al. (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13: 803–813.
[37]  Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, et al. (2000) Transduction of human CD34+ CD38? bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 1: 566–573.
[38]  Ailles L, Schmidt M, Santoni de Sio FR, Glimm H, Cavalieri S, et al. (2002) Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Mol Ther 6: 615–626.
[39]  Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, et al. (1999) Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: Evidence for the amplification and self-renewal of repopulating stem cells. Blood 93: 3736–3749.
[40]  Cashman JD, Lapidot T, Wang JC, Doedens M, Shultz LD, et al. (1997) Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 89: 4307–4316.
[41]  Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, et al. (1989) Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol 17: 145–153.
[42]  Nishihara M, Wada Y, Ogami K, Ebihara Y, Ishii T, et al. (1998) A combination of stem cell factor and granulocyte colony-stimulating factor enhances the growth of human progenitor B cells supported by murine stromal cell line MS-5. Eur J Immunol 28: 855–864.
[43]  Ohkawara JI, Ikebuchi K, Fujihara M, Sato N, Hirayama F, et al. (1998) Culture system for extensive production of CD19+IgM+ cells by human cord blood CD34+ progenitors. Leukemia 12: 764–771.
[44]  Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, et al. (2000) Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13: 423–431.
[45]  de Bruijn MF, Speck NA (2004) Core-binding factors in hematopoiesis and immune function. Oncogene 23: 4238–4248.
[46]  Nishimura M, Fukushima-Nakase Y, Fujita Y, Nakao M, Toda S, et al. (2004) VWRPY motif-dependent and -independent roles of AML1/Runx1 transcription factor in murine hematopoietic development. Blood 103: 562–570.
[47]  North T, Gu TL, Stacy T, Wang Q, Howard L, et al. (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126: 2563–2575.
[48]  Okuda T, Takeda K, Fujita Y, Nishimura M, Yagyu S, et al. (2000) Biological characteristics of the leukemia-associated transcriptional factor AML1 disclosed by hematopoietic rescue of AML1-deficient embryonic stem cells by using a knock-in strategy. Mol Cell Biol 20: 319–328.
[49]  Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, et al. (2003) Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 102: 4369–4376.
[50]  Sun W, Downing JR (2004) Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors. Blood 104: 3565–3572.
[51]  de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, et al. (2002) Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 22: 5506–5517.
[52]  Schwieger M, Lohler J, Friel J, Scheller M, Horak I, et al. (2002) AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196: 1227–1240.
[53]  Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, et al. (2000) Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 96: 3154–3160.
[54]  Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, et al. (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175.
[55]  Ling KW, Ottersbach K, van Hamburg JP, Oziemlak A, Tsai FY, et al. (2004) GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J Exp Med 200: 871–882.
[56]  Rodrigues NP, Janzen V, Forkert R, Dombkowski DM, Boyd AS, et al. (2005) Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106: 477–484.
[57]  Stirewalt DL (2004) Fine-tuning PU.1. Nat Genet 36: 550–551.
[58]  Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24: 372–376.
[59]  Chickarmane V, Troein C, Nuber HM, Sauro C, Peterson C (2006) Transcriptional dynamics of the embryonic stem cell switch. PLOS Computational Biology 2: 1080–1092. doi:10.1371/journal.pcbi.0020123.
[60]  Swiers G, Patient R, Loose M (2006) Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol 294: 525–540.
[61]  Brunstein CG, Wagner JE (2006) Umbilical cord blood transplantation and banking. Annu Rev Med 57: 403–417.
[62]  Sorrentino BP (2004) Clinical strategies for expansion of haematopoietic stem cells. Nat Rev Immunol 4: 878–888.
[63]  Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, et al. (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90: 5002–5012.
[64]  de Wynter EA, Buck D, Hart C, Heywood R, Coutinho LH, et al. (1998) CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 16: 387–396.
[65]  Jin CH, Takada H, Nomura A, Takahata Y, Nakayama H, et al. (2000) Immunophenotypic and functional characterization of CD33(+)CD34(+) cells in human cord blood of preterm neonates. Exp Hematol 28: 1174–1180.
[66]  Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, et al. (2005) Hematopoietic stem cells express multiple myeloid markers: Implications for the origin and targeted therapy of acute myeloid leukemia. Blood 106: 4086–4092.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133