Background Human herpesvirus-6 (HHV-6) is a β-herpesvirus with 90% seroprevalence that infects and establishes latency in the central nervous system. Two HHV-6 variants are known: HHV-6A and HHV-6B. Active infection or reactivation of HHV-6 in the brain is associated with neurological disorders, including epilepsy, encephalitis, and multiple sclerosis. In a preliminary study, we found HHV-6B DNA in resected brain tissue from patients with mesial temporal lobe epilepsy (MTLE) and have localized viral antigen to glial fibrillary acidic protein (GFAP)–positive glia in the same brain sections. We sought, first, to determine the extent of HHV-6 infection in brain material resected from MTLE and non-MTLE patients; and second, to establish in vitro primary astrocyte cultures from freshly resected brain material and determine expression of glutamate transporters. Methods and Findings HHV-6B infection in astrocytes and brain specimens was investigated in resected brain material from MTLE and non-MTLE patients using PCR and immunofluorescence. HHV-6B viral DNA was detected by TaqMan PCR in brain resections from 11 of 16 (69%) additional patients with MTLE and from zero of seven (0%) additional patients without MTLE. All brain regions that tested positive by HHV-6B variant-specific TaqMan PCR were positive for viral DNA by nested PCR. Primary astrocytes were isolated and cultured from seven epilepsy brain resections and astrocyte purity was defined by GFAP reactivity. HHV-6 gp116/54/64 antigen was detected in primary cultured GFAP-positive astrocytes from resected tissue that was HHV-6 DNA positive—the first demonstration of an ex vivo HHV-6–infected astrocyte culture isolated from HHV-6–positive brain material. Previous work has shown that MTLE is related to glutamate transporter dysfunction. We infected astrocyte cultures in vitro with HHV-6 and found a marked decrease in glutamate transporter EAAT-2 expression. Conclusions Overall, we have now detected HHV-6B in 15 of 24 patients with mesial temporal sclerosis/MTLE, in contrast to zero of 14 with other syndromes. Our results suggest a potential etiology and pathogenic mechanism for MTLE.
References
[1]
Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, et al. (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234: 596–601.
[2]
Okuno T, Takahashi K, Balachandra K, Shiraki K, Yamanishi K, et al. (1989) Seroepidemiology of human herpesvirus 6 infection in normal children and adults. J Clin Microbiol 27: 651–653.
[3]
Kimberlin DW, Whitley RJ (1998) Human herpesvirus-6: Neurologic implications of a newly-described viral pathogen. J Neurovirol 4: 474–485.
[4]
Campadelli-Fiume G, Mirandola P, Menotti L (1999) Human herpesvirus 6: An emerging pathogen. Emerg Infect Dis 5: 353–366.
[5]
Saito Y, Sharer LR, Dewhurst S, Blumberg BM, Hall CB, et al. (1995) Cellular localization of human herpesvirus-6 in the brains of children with AIDS encephalopathy. J Neurovirol 1: 30–39.
[6]
Caserta MT, Hall CB, Schnabel K, McIntyre K, Long C, et al. (1994) Neuroinvasion and persistence of human herpesvirus 6 in children. J Infect Dis 170: 1586–1589.
[7]
Singh N, Paterson DL (2000) Encephalitis caused by human herpesvirus-6 in transplant recipients: Relevance of a novel neurotropic virus. Transplantation 69: 2474–2479.
[8]
De Bolle L, Naesens L, De Clercq E (2005) Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 18: 217–245.
[9]
Akhyani N, Berti R, Brennan MB, Soldan SS, Eaton JM, et al. (2000) Tissue distribution and variant characterization of human herpesvirus (HHV)-6: Increased prevalence of HHV-6A in patients with multiple sclerosis. J Infect Dis 182: 1321–1325.
[10]
Hall CB, Caserta MT, Schnabel KC, Long C, Epstein LG, et al. (1998) Persistence of human herpesvirus 6 according to site and variant: Possible greater neurotropism of variant A. Clin Infect Dis 26: 132–137.
[11]
Dewhurst S, McIntyre K, Schnabel K, Hall CB (1993) Human herpesvirus 6 (HHV-6) variant B accounts for the majority of symptomatic primary HHV-6 infections in a population of U.S. infants. J Clin Microbiol 31: 416–418.
[12]
McCullers JA, Lakeman FD, Whitley RJ (1995) Human herpesvirus 6 is associated with focal encephalitis. Clin Infect Dis 21: 571–576.
[13]
Wainwright MS, Martin PL, Morse RP, Lacaze M, Provenzale JM, et al. (2001) Human herpesvirus 6 limbic encephalitis after stem cell transplantation. Ann Neurol 50: 612–619.
[14]
Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, et al. (1995) Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 92: 7440–7444.
[15]
Donati D, Akhyani N, Fogdell-Hahn A, Cermelli C, Cassiani-Ingoni R, et al. (2003) Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology 61: 1405–1411.
[16]
Soldan SS, Berti R, Salem N, Secchiero P, Flamand L, et al. (1997) Association of human herpes virus 6 (HHV-6) with multiple sclerosis: Increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med 3: 1394–1397.
[17]
Mock DJ, Powers JM, Goodman AD, Blumenthal SR, Ergin N, et al. (1999) Association of human herpesvirus 6 with the demyelinative lesions of progressive multifocal leukoencephalopathy. J Neurovirol 5: 363–373.
[18]
Hall CB, Long CE, Schnabel KC, Caserta MT, McIntyre KM, et al. (1994) Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N Engl J Med 331: 432–438.
[19]
Yoshikawa T, Asano Y (2000) Central nervous system complications in human herpesvirus-6 infection. Brain Dev 22: 307–314.
[20]
Asano Y, Yoshikawa T, Suga S, Kobayashi I, Nakashima T, et al. (1994) Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics 93: 104–108.
[21]
Begley CE, Famulari M, Annegers JF, Lairson DR, Reynolds TF, et al. (2000) The cost of epilepsy in the United States: An estimate from population-based clinical and survey data. Epilepsia 41: 342–351.
[22]
Annegers JF, Hauser WA, Shirts SB, Kurland LT (1987) Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med 316: 493–498.
[23]
Berg AT, Shinnar S (1996) Unprovoked seizures in children with febrile seizures: Short-term outcome. Neurology 47: 562–568.
[24]
Theodore WH, Bhatia S, Hatta J, Fazilat S, DeCarli C, et al. (1999) Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology 52: 132–136.
[25]
VanLandingham KE, Heinz ER, Cavazos JE, Lewis DV (1998) Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 43: 413–426.
[26]
Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345: 311–318.
[27]
Goodman AD, Mock DJ, Powers JM, Baker JV, Blumberg BM (2003) Human herpesvirus 6 genome and antigen in acute multiple sclerosis lesions. J Infect Dis 187: 1365–1376.
[28]
Donati D, Martinelli E, Cassiani-Ingoni R, Ahlqvist J, Hou J, et al. (2005) Variant-specific tropism of human herpesvirus 6 in human astrocytes. J Virol 79: 9439–9448.
[29]
Albright AV, Lavi E, Black JB, Goldberg S, O'Connor MJ, et al. (1998) The effect of human herpesvirus-6 (HHV-6) on cultured human neural cells: oligodendrocytes and microglia. J Neurovirol 4: 486–494.
[30]
He J, McCarthy M, Zhou Y, Chandran B, Wood C (1996) Infection of primary human fetal astrocytes by human herpesvirus 6. J Virol 70: 1296–1300.
[31]
Lusso P, Markham PD, Tschachler E, di Marzo Veronese F, Salahuddin SZ, et al. (1988) In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). J Exp Med 167: 1659–1670.
[32]
French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, et al. (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34: 774–780.
[33]
Williamson PD, French JA, Thadani VM, Kim JH, Novelly RA, et al. (1993) Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology. Ann Neurol 34: 781–787.
[34]
Secchiero P, Carrigan DR, Asano Y, Benedetti L, Crowley RW, et al. (1995) Detection of human herpesvirus 6 in plasma of children with primary infection and immunosuppressed patients by polymerase chain reaction. J Infect Dis 171: 273–280.
[35]
Nitsche A, Muller CW, Radonic A, Landt O, Ellerbrok H, et al. (2001) Human herpesvirus 6A DNA is detected frequently in plasma but rarely in peripheral blood leukocytes of patients after bone marrow transplantation. J Infect Dis 183: 130–133.
[36]
Legay V, Deleage C, Beaulieux F, Giraudon P, Aymard M, et al. (2003) Impaired glutamate uptake and EAAT2 downregulation in an enterovirus chronically infected human glial cell line. Eur J Neurosci 17: 1820–1828.
[37]
Cuomo L, Trivedi P, Cardillo MR, Gagliardi FM, Vecchione A, et al. (2001) Human herpesvirus 6 infection in neoplastic and normal brain tissue. J Med Virol 63: 45–51.
[38]
Chan PK, Ng HK, Hui M, Cheng AF (2001) Prevalence and distribution of human herpesvirus 6 variants A and B in adult human brain. J Med Virol 64: 42–46.
[39]
Opsahl ML, Kennedy PG (2005) Early and late HHV-6 gene transcripts in multiple sclerosis lesions and normal appearing white matter. Brain 128: 516–527.
[40]
Cermelli C, Berti R, Soldan SS, Mayne M, D'Ambrosia J M, et al. (2003) High frequency of human herpesvirus 6 DNA in multiple sclerosis plaques isolated by laser microdissection. J Infect Dis 187: 1377–1387.
[41]
Blumberg BM, Mock DJ, Powers JM, Ito M, Assouline JG, et al. (2000) The HHV6 paradox: Ubiquitous commensal or insidious pathogen? A two-step in situ PCR approach. J Clin Virol 16: 159–178.
[42]
Eeg-Olofsson O, Bergstrom T, Osterland CK, Andermann F, Olivier A (1995) Epilepsy etiology with special emphasis on immune dysfunction and neurovirology. Brain Dev 17: 58–60.
[43]
Uesugi H, Shimizu H, Maehara T, Arai N, Nakayama H (2000) Presence of human herpesvirus 6 and herpes simplex virus detected by polymerase chain reaction in surgical tissue from temporal lobe epileptic patients. Psychiatry Clin Neurosci 54: 589–593.
[44]
Eeg-Olofsson O, Bergstrom T, Andermann F, Andermann E, Olivier A, et al. (2004) Herpesviral DNA in brain tissue from patients with temporal lobe epilepsy. Acta Neurol Scand 109: 169–174.
[45]
Sutula TP, Hermann B (1999) Progression in mesial temporal lobe epilepsy. Ann Neurol 45: 553–556.
[46]
Theodore WH, Gaillard WD (2002) Neuroimaging and the progression of epilepsy. Prog Brain Res 135: 305–313.
[47]
Kalviainen R, Salmenpera T, Partanen K, Vainio P, Riekkinen P, et al. (1998) Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology 50: 1377–1382.
[48]
Tasch E, Cendes F, Li LM, Dubeau F, Andermann F, et al. (1999) Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol 45: 568–576.
[49]
Araque A, Sanzgiri RP, Parpura V, Haydon PG (1999) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77: 699–706.
Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, et al. (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: Possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363: 28–37.
[52]
Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, et al. (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125: 32–43.
[53]
Hoogland G, Spierenburg HA, van Veelen CW, van Rijen PC, van Huffelen AC, et al. (2004) Synaptosomal glutamate and GABA transport in patients with temporal lobe epilepsy. J Neurosci Res 76: 881–890.