全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2007 

Canine and Human Visual Cortex Intact and Responsive Despite Early Retinal Blindness from RPE65 Mutation

DOI: 10.1371/journal.pmed.0040230

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background RPE65 is an essential molecule in the retinoid-visual cycle, and RPE65 gene mutations cause the congenital human blindness known as Leber congenital amaurosis (LCA). Somatic gene therapy delivered to the retina of blind dogs with an RPE65 mutation dramatically restores retinal physiology and has sparked international interest in human treatment trials for this incurable disease. An unanswered question is how the visual cortex responds after prolonged sensory deprivation from retinal dysfunction. We therefore studied the cortex of RPE65-mutant dogs before and after retinal gene therapy. Then, we inquired whether there is visual pathway integrity and responsivity in adult humans with LCA due to RPE65 mutations (RPE65-LCA). Methods and Findings RPE65-mutant dogs were studied with fMRI. Prior to therapy, retinal and subcortical responses to light were markedly diminished, and there were minimal cortical responses within the primary visual areas of the lateral gyrus (activation amplitude mean ± standard deviation [SD] = 0.07% ± 0.06% and volume = 1.3 ± 0.6 cm3). Following therapy, retinal and subcortical response restoration was accompanied by increased amplitude (0.18% ± 0.06%) and volume (8.2 ± 0.8 cm3) of activation within the lateral gyrus (p < 0.005 for both). Cortical recovery occurred rapidly (within a month of treatment) and was persistent (as long as 2.5 y after treatment). Recovery was present even when treatment was provided as late as 1–4 y of age. Human RPE65-LCA patients (ages 18–23 y) were studied with structural magnetic resonance imaging. Optic nerve diameter (3.2 ± 0.5 mm) was within the normal range (3.2 ± 0.3 mm), and occipital cortical white matter density as judged by voxel-based morphometry was slightly but significantly altered (1.3 SD below control average, p = 0.005). Functional magnetic resonance imaging in human RPE65-LCA patients revealed cortical responses with a markedly diminished activation volume (8.8 ± 1.2 cm3) compared to controls (29.7 ± 8.3 cm3, p < 0.001) when stimulated with lower intensity light. Unexpectedly, cortical response volume (41.2 ± 11.1 cm3) was comparable to normal (48.8 ± 3.1 cm3, p = 0.2) with higher intensity light stimulation. Conclusions Visual cortical responses dramatically improve after retinal gene therapy in the canine model of RPE65-LCA. Human RPE65-LCA patients have preserved visual pathway anatomy and detectable cortical activation despite limited visual experience. Taken together, the results support the potential for human visual benefit from retinal therapies currently being

References

[1]  Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, et al. (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28: 92–95.
[2]  Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, et al. (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12: 1072–1082.
[3]  Batten ML, Imanishi Y, Tu DC, Doan T, Zhu L, et al. (2005) Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis. PLoS Med 2: e333.. doi:10.1371/journal.pmed.0020333.
[4]  Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, et al. (2005) Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci 46: 3039–3045.
[5]  Williams ML, Coleman JE, Haire SE, Aleman TS, Cideciyan AV, et al. (2006) Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 3: e201.. doi:10.1371/journal.pmed.0030201.
[6]  Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122: 449–459.
[7]  Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102: 12413–12418.
[8]  Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, et al. (2004) In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 9: 182–188.
[9]  Bemelmans AP, Kostic C, Crippa SV, Hauswirth WW, Lem J, et al. (2006) Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Med 3: e347.. doi:10.1371/journal.pmed.0030347.
[10]  Aleman TS, Jacobson SG, Chico JD, Scott ML, Cheung AY, et al. (2004) Impairment of the transient pupillary light reflex in Rpe65(?/?) mice and humans with Leber congenital amaurosis. Invest Ophthalmol Vis Sci 45: 1259–1271.
[11]  Nusinowitz S, Ridder WH 3rd, Pang JJ, Chang B, Noorwez SM, et al. (2006) Cortical visual function in the rd12 mouse model of Leber congenital amarousis (LCA) after gene replacement therapy to restore retinal function. Vision Res 46: 3926–3934.
[12]  Jacobson SG, Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB, et al. (2005) Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success. Proc Natl Acad Sci U S A 102: 6177–6182.
[13]  Jacobson SG, Acland GM, Aguirre GD, Aleman TS, Schwartz SB, et al. (2006) Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 13: 1074–1084.
[14]  Jacobson SG, Boye SL, Aleman TS, Conlon TJ, Zeiss CJ, et al. (2006) Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum Gene Ther 17: 845–858.
[15]  Fine I, Wade AR, Brewer AA, May MG, Goodman DF, et al. (2003) Long-term deprivation affects visual perception and cortex. Nat Neurosci 6: 915–916.
[16]  Noppeney U, Friston KJ, Ashburner J, Frackowiak R, Price CJ (2005) Early visual deprivation induces structural plasticity in gray and white matter. Curr Biol 15: R488–R490.
[17]  Shimony JS, Burton H, Epstein AA, McLaren DG, Sun SW, et al. (2006) Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex 16: 1653–1661.
[18]  Leopold DA, Plettenberg HK, Logothetis NK (2002) Visual processing in the ketamine-anesthetized monkey. Optokinetic and blood oxygenation level-dependent responses. Exp Brain Res 143: 359–372.
[19]  Willis CK, Quinn RP, McDonell WM, Gati J, Parent J, et al. (2001) Functional MRI as a tool to assess vision in dogs: The optimal anesthetic. Vet Ophthalmol 4: 243–253.
[20]  Aguirre GK, Zarahn E, D'Esposito M (1998) The variability of human, BOLD hemodynamic responses. Neuroimage 8: 360–369.
[21]  Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15: 488–500.
[22]  Avants BB, Gee JC (2004) Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23: S139–S150.
[23]  Calhoun VD, Stevens MC, Pearlson GD, Kiehl KA (2004) fMRI analysis with the general linear model: Removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. Neuroimage 22: 252–257.
[24]  Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Schwartz SB, et al. (2007) RDH12 and RPE65, visual cycle genes causing Leber congenital amaurosis, differ in disease expression. Invest Ophthalmol Vis Sci 48: 332–338.
[25]  Roman AJ, Schwartz SB, Aleman TS, Cideciyan AV, Chico JD, et al. (2005) Quantifying rod photoreceptor-mediated vision in retinal degenerations: Dark-adapted thresholds as outcome measures. Exp Eye Res 80: 259–272.
[26]  Karim S, Clark RA, Poukens V, Demer JL (2004) Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Invest Ophthalmol Vis Sci 45: 1047–1051.
[27]  Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. Neuroimage 11: 805–821.
[28]  Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23: 208–219.
[29]  Avants BB, Gee JC (2004) Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23(Suppl 1): S139–150.
[30]  Duong TQ, Ngan SC, Ugurbil K, Kim SG (2002) Functional magnetic resonance imaging of the retina. Invest Ophthalmol Vis Sci 43: 1176–1181.
[31]  Palmer LA, Rosenquist AC, Tusa RJ (1978) The retinotopic organization of lateral suprasylvian visual areas in the cat. J Comp Neurol 177: 237–256.
[32]  Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177: 213–235.
[33]  Auricchio A, Kobinger G, Anand V, Hildinger M, O'Connor E, et al. (2001) Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: The retina as a model. Hum Mol Genet 10: 3075–3081.
[34]  Brunquell PJ, Papale JH, Horton JC, Williams RS, Zgrabik MJ, et al. (1984) Sex-linked hereditary bilateral anophthalmos. Pathologic and radiologic correlation. Arch Ophthalmol 102: 108–113.
[35]  Rauschecker JP (1995) Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci 18: 36–43.
[36]  Bavelier D, Neville HJ (2002) Cross-modal plasticity: Where and how? Nat Rev Neurosci 3: 443–452.
[37]  Wandell BA, Brewer AA, Dougherty RF (2005) Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci 360: 693–707.
[38]  Boynton GM, Demb JB, Glover GH, Heeger DJ (1999) Neuronal basis of contrast discrimination. Vision Res 39: 257–269.
[39]  Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, et al. (2003) Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 44: 1663–1672.
[40]  Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, et al. (2007) Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 14: 292–303.
[41]  Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, et al. (2006) Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 13: 565–572.
[42]  Daw NW (1995) Visual development. New York: Plenum Press. 228 p.
[43]  Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27: 549–579.
[44]  Wiesel TN, Hubel DH (1965) Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28: 1060–1072.
[45]  Mower GD, Berry D, Burchfiel JL, Duffy FH (1981) Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex. Brain Res 220: 255–267.
[46]  Spear PD, Tong L, Sawyer C (1983) Effects of binocular deprivation on responses of cells in cat's lateral suprasylvian visual cortex. J Neurophysiol 49: 366–382.
[47]  Bainbridge JWB, Tan MH, Ali RR (2006) Gene therapy progress and prospects: The eye. Gene Ther 13: 1191–1197.
[48]  Beatty RM, Sadun AA, Smith L, Vonsattel JP, Richardson EP Jr. (1982) Direct demonstration of transsynaptic degeneration in the human visual system: A comparison of retrograde and anterograde changes. J Neurol Neurosurg Psychiatry 45: 143–146.
[49]  Fan J, Rohrer B, Moiseyev G, Ma JX, Crouch RK (2003) Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc Natl Acad Sci U S A 100: 13662–13667.
[50]  Maurer D, Lewis TL, Mondloch CJ (2005) Missing sights: Consequences for visual cognitive development. Trends Cogn Sci 9: 144–151.
[51]  Sinha P, Ostrovsky Y, Meyers E (2006) Parsing visual scenes via dynamic cues. J Vis 6: 95.
[52]  Van Hooser JP, Aleman TS, He YG, Cideciyan AV, Kuksa V, et al. (2000) Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci U S A 97: 8623–8628.
[53]  Weiland JD, Liu W, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7: 361–401.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133